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PHILOSOPHICAL TRANSACTIONSR.

I. On the Mechanical Conditions of a Swarm of Meteorites, and on Theories of
‘ Cosmogony.
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Mr. LockYER writes in his interesting paper on Meteorites* as follows :—

“ The brighter lines in spiral nebulze, and in those in which a rotation has been set
up, are in all probability due to streams of meteorites with irregular motions out of
the main streams, in which the collisions would be almost nil. It has already been
suggested by Professor G. DARWIN (* Nature,’ vol. 31, 1884-5, p. 25)—using the gaseous
hypothesis—that in such nebule ‘the great mass of the gas is non-luminous, the
luminesity being an evidence of condensation along lines of low velocity, according to
a well known hydrodynamical law. From this point of view, the visible nebula may
be regarded as a luminous diagram of its own stream-lines.’”

The whole of Mr. LocKYER's paper, and especially this passage in it, leads me to
make a suggestion for the reconciliation of two apparently divergent theories of the
origin of planetary systems.

The nebular hypothesis depends essentially on the idea that the pr1m1t1ve nebula is
a rotating mass of fluid, which at successive epochs becomes unstable from excess ot
rotation, and sheds a ring from the equatorial region.

The researches of Rocumt (apparently but little known in this country) have
imparted to this theory a precision which was wanting in LAPLACE'S original
exposition, and have rendered the explanation of the origin of the planets more
perfect.

But notwithstanding the high probability that some theory of the kind is true,] the
acceptance of the nebular hypothesis presents great difficulties.

Sir WirLiam Tromson long ago expressed to roe his opinion that the most pro-
bable origin of the planets was through a gradual accretion of meteoric matter, and
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* ¢ Nature,” Nov. 17, 1887. The paper itself is in ¢ Roy. Soc. Proc.,” Nov. 15, 1887 (No. 259, p. 117).

t ¢ Montpellier, Acad. Sci. Mém.’

I [The very remarkable photograph of the nebula in Andromeda, exhibited to the Royal Astronomical
Society by Mr. Isaac Roberts on December 6, 1888, affords something like a proof of the substantial
trath of the nebular hypothesis.—G. H. D. December 19, 1838.]
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2 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

the researches of Mr. LockyEr afford actual evidence in favour of the abundance of
meteorites in space. :

But the very essence of the nebular hypothesis is the conception of fluid pressure,
since withoutrit the idea of a figure of equilibrium becomes inapplicable. Now, at
first sight, the meteoric condition of matter seems absolutely inconsistent with a fluid
pressure exercised by one part of the system on another. We thus seem driven either
to the absolute rejection of the nebular hypothesis, or to deny that the meteoric con-
dition was the immediate antecedent of the Sun and Planets. M. FAYE has taken the
former course, and accepts as a necessary counsequence the formulation of a succession
of events quite different from that of the nebular hypothesis.* I cannot myself find
that his theory is an improvement on that of LAPLACE, except in regard to the adop-
tion of meteorites, for he has lost the conception of the figure of equilibrium of a
rotating mass of fluid.

The object of this paper is to point out that by a certain interpretation of the
meteoric theory we may obtain a reconciliation of these two orders of ideas, and may
hold that the origin of stellar and planetary systems is meteoric, whilst retaining the
conception of fluid pressure. ‘

According to the kinetic theory of gases, fluid pressure is the average result of the
impacts of molecules. If we imagine the molecules magnified until of the size of
meteorites, their impacts will still, on a coarser scale, give a quasi-fluid pressure. I
suggest then that the fluid pressure essential to the nebular hypothesis is, in fact, the
resultant of countless impacts of meteorites.

The problems of hydrodynamics could hardly be attacked with success, if we were
forced to start from the beginning and to consider the cannonade of molecules. But
when once satisfied that the kinetic theory will give us a gas, which, in a space
containing some millions of molecules, obeys all the laws of an ideal non-molecular
gas filling all space, we may put the molecules out of sight and treat the gas as a
plenum.

In the same way, the difficulty of tracing the impacts of meteorites in detail is
insuperable ; but, if we can find that such impacts give rise to a quasi-fluid pressure on
a large scale, we may be able to trace out many results by treating an ideal plenum.
Laprace’s hypothesis implies such a plenum, and it is here maintained that this
plenum is merely the idealisation of the impacts of meteorites.

As a bare suggestion this view is worth but little, for its acceptance or rejection
must turn entirely on numerical values, which can only be obtained by the considera-
tion of some actual system. It is obvious that the solar system is the only one about
which we have sufficient knowledge to afford a basis for discussion. This paper is
accordingly devoted to a consideration of the mechanics of a swarm of meteorites, with
special numerical application to the solar system.

The investigation has entailed a considerable amount of mathematical analysis ;

* ¢Sur 1'Origine du Monde,” Paris, GAuTHIER-VILLARS, 1884; ¢ Annuaire pour l'an 1885, Bureau des
Longitudes,” p. 757.
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 3

there is, however, no analysis in §§1 and 2. The reader who only wishes to know
the arguments and results, without a consideration of the mathematical details, is
therefore recommended, after reading §§ 1 and 2, to pass on to the Summary.

§ 1. On the Effective Elasticity of Meteorites in Collision.

When two meteoric stones meet with planetary velocity, the stress between them
during impact must generally be such that the limits of true elasticity are exceeded ;
and it may be urged that a kinetic theory is inapplicable unless the colliding particles
are highly elastic. It may, however, I think, be shown that the very greatness of
the velocities will impart what virtually amounts to an elasticity of a high order of
perfection. .

It appears, o priori, probable that, when two meteorites clash, a portion of the
solid matter of each is volatilised, and Mr. LockYER considers the epectroscopic
evidence conclusive that it is so. There is, no doubt, enough energy liberated on
impact to volatilise the whole of both bodies, but only a small portion of each stone
will undergo this change. |

A rough numerical example will show the kind of quantities with which we are
here dealing.

It will appear hereafter that the mean velocity of a meteorite may be at the least
about 5 kilometres a second ; and, aceordingly, the mean relative velocity of a pair
would then be about 7 kilometres a second.® Hence, if two stones, weighing a
kilogramme, move each with a velocity of 3% kilometres per second directly towards
one another, the energy liberated at the moment of impact is 2 X & X 10%(3% X 10%)?
or 12 X 1083 ergs.

Now JoULE's equivalent is 42 X 107 ergs; hence, the energy liberated is about
3 million calories.

It is quite uncertain how much of each stone would be volatilised ; but, if it were
3 grammes, there would be a million calories of energy applied to each gramme.

The melting temperature of iron is about 1500 degrees Centigrade, and the mean
specific heat of iron may be about .t Hence, about 300 calories are required to raise
a gramme of iron from absolute zero to melting point. I do not know the latent heat
of the melting of iron, but for platinum it is 27, and the latent hecat of volatilisation
of mercury is 62. Hence, about 400 or 500 calories suffice to raise a gramme of iron
from absolute zero to volatilisation. It is clear, then, that there is energy enough,
not only to volatilise the iron, but also to render the gas incandescent; and the same
would be true if the mass operated on by the energy were 30 grammes instead of 3.

It must necessarily be obscure as to how a small mass of solid matter can take up
a very large amount of energy in a small fraction of a second, but spectroscopic
evidence seems to show that it does so; and, if so, we have what is virtually a violent
explosive introduced between the two stones.

* If v be the velocity of mean square, v +/ 2 is the square root of the mean square of relative velocity.
t ¢ Physikalisch-Chemische Tabellen.” . LanpornT and BORNSTEIN.
B 2


http://rsta.royalsocietypublishing.org/

a4
I\

A A

I ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

4 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

In a direct collision each stone is probably shattered into fragments, like the
splashes of lead when a bullet hits an iron target. But direct collision must be
a comparatively rare event. In glancing cellisions the velocity of neither body is
wholly arrested, the concentration of energy is not so enormous (although probably
still sufficient to effect volatilisation), and, since the stones rub past one another, more
time is allowed for the matter round the point of contact to take up the energy; thus,
the whole process of collision is much more intelligible. The nearest terrestrial
analogy is when a cannon-ball bounds off' the sea. In glancing collisions fracture will
probably not be very frequent. _ | .

I'rom these arguments, it is probable that, when two meteorites meet, they attain
an effective elasticity of a high order of perfection ; but there is, of course, some loss
of energy at each collision. [It must, however, be admitted that on collision the
deflection of path is rarely through a very large angle. But a succession of glancing
collisions would be capable of reversing the path; and, thus, the kinetic theory of
meteorites may be taken as not differing materially from that of gases.*]

Perhaps the most serious difficulty in the whole theory arises from the fractures
which must often occur. If they happen with great frequency, it would seem as if
the whole swarm of meteorites would degrade into dust. We know, however, that
meteorites of considerable size fall upon the Earth; and, unless Mr. LockYER has
misinterpreted the spectroscopic evidence, the nebule do now consist of meteorites.
Hence, it would seem as if fracture was not of very frequent occurrence. It is easy
to see that, if two bodies meet with a given velocity, the chance of fracture is much
greater if they are large, and it is possible that the process of breaking up will go on
only until a certain size, dependent on the velocity of agitation, is reached, and will
then become comparatively unimportant.

When the volatilised gases cool, they will condense into a metallic rain, and this
may fuse with old meteorites whose surfaces are molten. A meteorite in that
condition will certainly also pick up dust. Thus, there are processes in action
tending to counteract subdivision by fracture and volatilisation. The mean size of
meteorites probably depends on the balance between these opposite tendencies. If
this is so, there will be some fractures, and some fusions, but the mean mass will
change very slowly with the mean kinetic energy of agitation. This view is, at any
rate, adopted in the paper as a working hypothesis. It was not, however, possible
to take account of fracture and fusion in the mathematical investigation, but the
meteorites are treated as being of invariable mass.

§ 2. On the Velocity of Agitation of Meteorites, and on its Secular Change.

The velocity with which the meteorites move is derived from their fall from a great
distance towards a centre of aggregation. In other words, the potential energy of
their mutual attraction when widely dispersed becomes converted, at least partially,

* Added Nov. 16, 1888.


http://rsta.royalsocietypublishing.org/

a
/)

A A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

A

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 5

into kinetic energy. "When the condensation of a swarm is just beginning, the mass of
the aggregation towards which the meteorites fall is small ; and, thus, the new bodies
arrive at the aggregation with small velocity. Hence, initially, the kinetic energy is
small, and the volume of the sphere within which hydrostatic ideas are (if anywhere)
applicable is also small. '

As more and more meteorites fall in that volume is enlarged, and the velocity with
which they reach the aggregation is increased. Finally, the supply of meteorites in
that part of space begins to fail, and the imperfect elasticity of the colliding bodies
brings about a gradual contraction of the swarm.

I do not now attempt to trace the whole history of a swarm, but the object of the
paper is to examine its mechanical condition at an epoch when the supply of meteorites
from outside has stopped, and when the velocities of agitation and distribution of
meteorites in space have arranged themselves into a sub-permanent condition, only
affected by secular changes. This examination will enable us to understand, at least
roughly, the secular change in the velocity and in the distribution of the meteorites
as the swarm contracts, and will throw light on other questions.

§ 8. Formule for Mean Square of Velocity, Mean Free Path, and Interval betueen
Collisions.

We have to investigate whether, when the solar system consisted of a swarm of
meteorites, the velocities and encounters could have been such that the mechanics of
the system can be treated as subject to the laws of hydrodynamics. The formulee
which form the basis of this discussion will now be considered.

For the sake of simplicity, the meteorites will, in the first instance, be treated as
spheres of uniform size.

The sum of the masses of the meteorites is equal to that of the Sun, for the planets
only contribute a negligible mass. If M be the Sun’s mass, and m that of a meteorite,
their number is M /m. '

If, at each encounter between two meteorites, there were no loss of energy, the sum
of the kinetic energies of all the meteorites would be equal to the potential energy
lost in the concentration of the swarm from a condition of infinite dispersion, until it
possessed its actual arrangement. In such a computation the rotational energy of the
system is negligible.

Suppose the Sun’s mass to be concentrated from infinite dispersion until it is
arranged in the form of a homogeneous sphere of radius @ and density p. Then let
the sphere be cut up into as many equal spaces as there are meteorites, and let the
matter in each space be concentrated into a meteorite. ~When the number of
meteorites is large, the potential energy lost in the first process is very great compared
with that lost in the subsequent partial condensation into meteorites,* Thus, the
energy lost in the partial condensation is negligible.

# Tt depends, in fact, on the square of the ratio of the diameter 2¢ to the linear dimersion of one of
the equal spaces.
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6 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

If u be the attractional constant, the lost energy of condensation is well known to
be $uM?/a. But on the hypothesis that there is no loss of energy at each encounter,
this must be equal to the sum of the kinetic energies of all the meteorites. If, there-
fore, v® be the mean square of velocity of a meteorite, we must have 3 M* = $uM?/a,
so that v* = ¢ u M /a.

But homogeneity of density and uniformity of kinetic energy of agitation are
impossible ; for the meteor-swarm must be much condensed towards its centre, so that
we have largely underestimated the lost potential energy of the system. Also, the
velocity of agitation must decrease towards the outside, or else the swarm would
extend to infinity. Besides this, the partial conversion of molar into molecular energy,
which must take place on each encounter, has been neglected.

We shall see below reason for believing that throughout a large central volume the
mean square of velocity of agitation is nearly uniform, and that outside of this region
it falls off.

Suppose, then, that M is the mass and a the radius of that portion of the swarm
in which the square of velocity of agitation is uniform ; let v,® be that square of velocity,
and let 1t be defined by reference to the potential of M at distance «, so that

Ml
oF=RE )

where 3 is a coefficient for which a numerical value will be found below.

The square of velocity of agitation outside of the radius a is to be denoted by +?,
and subsequent investigation will be necessary to evaluate ¢? in terms of v,2

If we denote by a, the Earth’s distance from the Sun, and by u, the Earth’
velocity in its orbit, we have

; M, ,
uozzp&o—“- Y 4]
Whence,
Ma
%zﬁuwg T

If in any distribution of meteorites w is the sum of the masses of all the meteorites
in unit volume, or the density of the swarm at any point, and if X be that distance
which is called in the kinetic theory of gases “ the mean distance between neighbouring

molecules,” we have
m

M= (@)

w

Now, the mean density of that part of the swarm in which the kinetic energy of
agitation is constant being p, we have

3
P:m; » s . . . N . . . . (5)
and
3 mop,
A 47 M/u (6)
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 7

Suppose that s is ““ the radius of the sphere of action” of a meteorite, so that when
two of them approach so that the distance between their centres is s there is a
collision.

Let L and T be the mean free path and mean interval between collisions. Then,
since the mean velocity is v /(8/3 ), we have, according to the kiuetic theory of

gases,*
A3 L
L:W’ T::; V4 S TR (4

Then, on substitution from (4), (5), and (6), we have

LN RS 0
b \&/ M w s Myw, ay) B\M) v w &
Now let
wm (). wmfs)
zF%, Z=l0<g;>3 N )
and we have
'v——,8u<§[[—o>% )
L=1. <M> fgp:: ; (10)

We now proceed to caleulate ug, ly, 7, and also 2a,//, using the centimetre-gramme-

second system of units.
The Sun’s mass may be taken as 815,511 times that of the Earth, and the Earth as
6:14 X 10%" grammes?; hence

M, = 10%278 = 1-9372 X 103 grammes.

The attractional constant and the Earth’s mean distance from the Sun are

648

B = 5w o, = 1'487 X 10" cm.

* MeveR, ¢ Kinetische Theorie der Gase.’
+ Here and elsewhere I generally use Evererr’s ¢ Units and Physical Constants.’
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8 PROTFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

With these valtes

Uy = 100463 = 2,905,600 cm. per sec. )
l, = 1086812 = 4,800,600 cm.
7y = 100%506 = 1-79334 sce, P (1)
20y = 106720 — 6,195,000
A )

The dimensions of /, and 7, are not those of length and time; but, if meteorites
of 1 gramme mass, with sphere of action 1 centimetre, and “ velocity of mean square”

of agitation equal to the Earth’s velocity in its orbit, have density of distribution

equal to one-third of the mean density of the sphere M, then [, 7, will be the mean
free path and time, as stated in centimetres and seconds. We may thus regard /,, =,
as a length and time, provided care be taken in the subsequent use of the symbols to
adhere to the c.g.s. system of units.

§4. On the Equilibrium of a Gas at Uniform Temperature in Concentric Spherical
Layers under its own Gravitation.

It is assumed provisionally that the conditions are satisfied which permit us to
regard the swarm of meteorites as a quasi-gas, subject to the laws of hydrostatics.

The solution of this problem, then, becomes a necessary preliminary to the discus-
sion of the kinetic theory of meteorites. The equilibrium of a gas under its own
gravitation has been ably discussed by Professor RITTER in one of his series of papers
on gaseous planets.* The intrinsic interest of the problem renders an independent
solution valuable. Suppose, then, that a mass M, of gas is enclosed in a spherical
envelope of radius a;, and is in equilibrium in concentric spherical layers. Let v2
the mean square of the velocity of agitation of the gaseous molecules, be defined by
reference to the potential of the mass M, at the radius o, so that

0,2 = B2 %1 ,

where 8% is a numerical coefficient, and u is the attractional constant.

Let p and w be the pressure and density of the gas at radius 7, and £ the modulus
of elasticity, so that

p=kw,

o i M, .

-

h=1p2=
3V o

ol

* ¢ Untersuchungen iiber die Hohe der Atmosphire und die Constitution gasférmiger Weltkorper,”
‘ WiepEMANN’S Annalen’ (New Series), vol. 16, 1882, p. 166. A very elegant solution of part of my
problem has also been given by Mr. G. W. Hiut in the ¢ Annals of Mathematics,” vol. 4, No. 1, p. 19
(February, 1888). Mr. Hitut’s paper only reached my hands after my own calculations had been
completed, and I therefore adhere to my own less elegant method. Mr, Hiur has obviously not seen
M. RI1TER’s papers.
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 9

Then the equation for the hydrostatic equilibrium of the gas is

£@+4w#rw¢2dr=0. N ¢ §3)
0

w dr

— 2 : , .. .
It is obvious that ——;7 % is equal to the whole mass enclosed inside radius r, and
W

this relation will hold however the equation be transformed, provided we do not
multiply the equation by any factor.
In consequence of the relation between p and w this may be written

d 4 (7
k |:7'2E/;' log w + —];’l-b [0 wr? d?”:l = 0.

If p, be the mean density of the mass M, we have

3ulM, 9%

3 — Do o, |
415 Bi*ay*py

dmp=
Hence, we may write the equation (12) in the form

™ d 9 [rw r? _
kal[(;]- 5»Iogw+é—2f —--dw}_o.

o prad®
Now, let 4
% wo_ 1 2 oY
Xy = ’ — =3 e,
1 r P 9 IB]_
and the equation becomes
dy © en :
%BJ%MI[— D @dxl]= 0. . . ... (3
By differentiation we obtain the equation
dacl2+m14_0' e s (14)

It is obvious from (13) that § 8,® M, dy,/dx, is the mass enclosed inside radius o/,
and therefore § 8,° dy,/dx, is equal to unity when z = 1. .

A general analytical solution of (14) does not seem to be attainable, and recourse
must be had to numerical processes. Although this is an equation of the second
degree, and its general solution must involve two arbitra,ry constants, we shall see (as
pointed out by M. RirteRr) that the general solution, as applicable to our problem,
may be deduced from one single numerical solution. M. RiTTER proceeds by a
graphical method, which he has worked with surprising accuracy. I shall therefore

adopt an analytical and numerical method, which, although laborious, is susceptible of
greater accuracy.
MDOCCLXXXIX.—A. C
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10 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

Whatever be the arrangement of the gas, the density at the centre must have some
value. I therefore start with a central density w, corresponding to the value y of v,
so that

L=1B%e. . . . . . . . . . . (15)
P

For the sake of brevity the suffixes 1 will be now omitted from the various symbols,
to be reaflixed later when they are required.

At the centre, where x is infinite, dy/dx, d*y/da®, &c., are all zero, and we put
y=n- '

Let € = ¢/2?, and let us assume

y=n+v
=9 — 4§+ 4,8 — 4,8+ ...

Now, the differential equation (14) to be satisfied is

d*y g
2 — v
i e &e
But
d,‘z
B = — 2.8+ 4. BAE — 6. TAE

and by expanding ¢’ we obtain

—fe=—E+ 4,8 — (4, + 142 &+ (4s + 4,4, + 515 47°) &
- (A4 + A1A3 + Jg‘ A22 + '12‘ A12A2 + T?%IAlé) 55

— 1 —__1 —_ 1 —_ 61
Al—'G, Az—mo: A3~1 90 > A4—1,632,960,
A4 — 629 — 8407383 ...
A5“224,532,000’ A6“ 156 x 108 2 &c.,

and
log 4, = 9:2218487, log 4, = 79208188, log A3 = 67235382,

log A, = 55723543,  log A, = 4'4473723,  log A, = 3'3392964 ;

whence, by extrapolation,
log 4, = 2-243, log Ag = 1'13.

In M. RirTer’s paper, already referred to, he takes a certain function  as equal to
1'081, when the radins is unity. Now, Rirrer’s function u 1s equal in my notation to
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 11

3 (w/p) + % Ba?/r® or Levja’. Tt follows, therefore, that RiTTER takes the surface
value of y = log, 2':062. But he intends the central density to be 100 times the
surface density ; hence, to take the same solution, we must have ¢’ equal to 100
times 2°062. Therefore, his value of 5y would be

n = log, 100 + log, 2:062,
or ‘
7 = 53288465

Now, as I want to make a comparison between my solution and his, T start with
this value of . The only object attained by the choice of this particular value is
that the two solutions become easily comparable. It will be seen below that the
value of » does not make the central density exactly 100 times the surface density,
but only satisfies that condition approximately. In RiTTeR’S graphical treatment of
the problem this value 100 is the exact datum, whereas in my method we start with
an exact value of 7, and proceed to find the ratio of central to surface density.

_ With this value of % (whence log,,e" = 2-3142888) I find the following series
for y:— ‘ ‘ '

34366 54 63879 539-
_ 5sassags — PA0007 | 334321 463879 | 675320 1044250

$2 x«t $6 xS xl()
16,789,000 277 x 108 = 44 x 10°
+ = e — s .. (16)

and, by differentiation, the series for dy/dwx is obvious.
. This series will be very accurate from x= o to about @ =8. Thus, when r/a ="1,

or x = 10, we have

d
y = 5016558, &% = + 0568910,

and even the far less convergent series for d?y/da® gives — 0150891, agreeing with
— e’/x* to the last place of decimals. When r/a = 125, or = 8, we have *

7
= 4863925, Y —= 101168,
; da
whence, .
d’y )
s = — 031624,

with y correct to four, and probably to five, places of decimals, and dy/dx probably
correct to four places of decimals. This is amply sufficient for our purpose. Indeed,
accuracy of this order would be altogether pedantic, were it not that the errors
accumulate.

* Bven when z = 5, I find from this series y = 4342, which lies very near to y = 4-332, found below.
But the series for dy/dw is useless.

c 2
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12 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

We cannot, then, rely on this method of procedure beyond the region included
ketween = o and x = 8, and must now make a new departure.
Since

dy_ _ ¢
da? at’
APy
log<—%é> =y —4logx;
therefore,
dy Ay [dy 4
==
Now, let,
1 dmy
An'-'giig’

where, after differentiation, x is put equal to ¢, a constant.
Then (17) may be written—

21 ' 4
Aﬁa@@—ﬁ......u.(m
Now, it is clear that (
dr4, __n+ p!
der — nl Ausp

Hence, differentiating (18) n — 3 times, we have

! ¢=7-3 5 —31 2n—g—1! g+ 1 4(q)
iy An= %" An—q—l {T Aq+1 + ("‘)7 —‘—}9

31 =0 n—3—glqgl 3l 2! @l
or
1 g=n-—38 ' 4
= T s, (n—q—l)(n—q—2)An-g~1{(q+ 1)Aq+1+(—)907+’1},
or ,
1 4
A”=n.n—-l.n——3{2'1142[(%“Z)A”—Q'I"(—)ncwz:l

dﬂ+“}(m

+3.24, ((n —8) Ay — (=)

[

Now, if, for a given value of z, viz., ¢, we know y, or 4, and dy/dzx, or 4,, then we
can compute A4, from the formula — Le®c~*; and, by the formula (18), viz. :—

1

A3=3_21{2.h%[A,—%J}

A, may be computed. ,
Afterwards, 4,, A, &c., may be computed by successive applications of (19). This
being so,
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‘A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 13
y=Ay+ 4, (x—c)+4(x—0c)*+..., . . . . (20)
dy

i =it 24y (m — o)+ 34y (m— o) + . ..

In these series « may have any value, provided the series converges adequately.
The convergence may be much improved by an artifice, which, however, I unfortu-
nately did not discover until most of the computations were completed. Let us add
and subtract log 2x% on the right-hand side of (20).

Now,

A A

4

log, 22* = log, 2¢* + 2 loge[l i 6]

(4

2(m-—--c)2 g (& —c)®
) 2 +§ ) -

= log, 2¢* + 2%;—
If, then, we write

2 |
By=4d,—log.2¢, Bi=d,—2, By=dAy+o5 By=Ay— sk,

OF

we have

y=log, 20+ B+ B, (x—c¢)+By(x—c)P+ ..., . . . (21)

a more convergent series than that with the 4’s.

The simplest way of computing the B’s appears to be by first computing the A’s.

The process for obtaining the numerical solution is then as follows :—

‘We have the values of vy, dy/dx,  dy*/dx® when ® = 8, that is to say, of 4., 4,, 4,
when ¢ = 8. From these the successive A’s and B’s are computed, and the resulting
series gives the values of y and dy/da when « is 5 or » = 2. Starting from this
point a new series gives the result when » =3, another series gives the values for
r =4, and so on. Later in the calculation several values may be computed from one

A

formula.* ] _

When the computation has been carried out to »=a, we have reached the
spherical envelope, but that envelope may be replaced by another at any more remote
distance from the centre. Thus, the integration may be pursued for values of x less
than unity, and when the lower limit is zero the envelope is at infinity.

If we write

SOCIETY

logu = By+ B (x —¢c)+ By(x —¢)*+ ...,

* If the series be carried as far as By, several steps may be included in one series. For example, the
first series, when ¢ = 8, may be pushed even as far as r = ‘4 without serious error; for it gives y=2-960
instead of the true value 2:965, and dy/dw =957, instead of the trn~ valuc ‘944. I have not, however,
been satisfied with this degree of accuracy.

OF
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14 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

we have
¢ =u.2x
and

Ba?
2

1

w
- = u.
P

Neg )

But it may easily be seen that 28%?/97? is a particular solution of the problem ;
hence, u is a factor by which the particular solution is to be multiplied to obtain the
general solution.  The function w is given by

w=3=—12%0 L (22

A table of the values of u is given below, showing how the general solution shades
off into the particular solution. This function, u, is also tabulated by RirTER, and I
made use of its value, when # =1, to determine the value of %, with which the
integration is to begin. I find, however (see Table I.), that, when « =1, u = 10063,
in place of 1'031, as given by him.

The last row in Table L. gives the ratio of the central density w to w,the density
at the distance »; this ratio is equal to e~ ",
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16 ) PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

It will be noticed that « rises from zero to a maximum of about 166, falls to a
minimum of about '82, and then rises to unity.

- Since 1 B,* dy,/dx; = 1 when z; = 1, we have § 8, = 1/24087 = "4152.

M. RitTER has *4143 for this constant, which he calls m.

It appears from the Table that the density at the centre is 102} times as great as
that where » = a;. M. Rirter’s solution is intended to make that ratio exactly 100,
but this solution shows that we ought to have started with a slightly different value
of m to obtain that result.

In the general solution of the differential equation d’/da® = — ev/x* the two
arbitrary constants may be taken to be the values of ¥ and dy/dx when « is infinite.
Now, we have taken arbitrarily ¥ = 5329 when x is infinite, and the physical
conditions of the problem imply that dy/dx is zero when w is infinite. For if dy/dx
had any positive or negative value different from zero, it would mean that at the
centre there was a nucleus of infinitely small dimensions, but of finite positive or
negative mass. Now, a; is that distance from the centre at which the density is
1/102°45 of the central density ; hence, we may regard a, as the arbitrary constant of
the solution. Whatever be the elasticity of the gas, we may always take as our unit
of length that distance from the centre of the nebula at which the density has fallen
to 1/10245 of its central value. Hence, the above table gives the general solution of
the problem, subject, however, to the condition that there is no central nucleus.

If we view the nebula from a very great distance, a, appears very small, and thus
the solution of the problem becomes y = log 24®. It is easy to verify that this is a
particular algebraic solution of the differential equation, as is pointed out by RirTeER
in his paper.®* I found this solution very useful in a preliminary consideration of the
problem treated in this paper. :

The next point which we have to consider is the form which the solution will take,
if, instead of taking a, as the unit of length, we take any other value.

The density at any distance and the elasticity are to remain unchanged, but are to
be referred to new constants.

Thus, w, 7, v* remain unchanged, but are to be referred to M, p, 8% a, instead of to
My, pi, B ar-

Now, since w remains unchanged,

s B%p & =5 B%p,e",
and, since v? remains unchanged,
Bp o = B’pi®
Also
[22 a
B=_—=ua .

# T have made use of this solution in a paper in the ‘ Proceedings of the Royal Society,” Dec. 3, 1883,
aud it has also been referred to in a paper by Sir W. Tromson, ‘ Phil. Mag.,” vol. 23, p. 287. Sir W.
TroMSON'S paper covers much the same ground as some of M. RirTer’s earlier papers, but was written
by him independently and in ignorance of them.
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. i7

From these relations it is clear that

— . — %
Y=1" 2108’“ ’
and

M=1R2M, (‘% <9c1 = ‘3)

Then, since % B* dy/dx = 1, when x = 1, and since dy = dy; and dx = dw, a/a,, it
follows that )

1= o=, 23
5B = sy when «; - G e (23)

This relationship has been already used for determining B8,%
It is obvious also that ‘
p _ %Pdy,/dz,, when ) =wa,ja

pr @Pdy/dz, when 2 =1

Therefore,

1 v
30!

= (2
p  a3dy/de, when z, =« /o

If w, be the density when r = a, we have

a, By, [da,®
dy, [dxy

Wy __ 36", when z, =a,ja __

— 1
P o x,® dy, [dy 8

, when #, = a,/a. . (25)

If p, be the pressure when 7 = a, we have
o= bty = g .
If, therefore, we write P = Fmpa®p?,

Po __ 132 Wo __ d*y, [da,?

=3 'p—'—(dyl/dxl)WWhen o =afa. . . . . (26)

By (26) we ave able to find how the pressure on an envelope of given radius a
varies with the variation of the temperature of a given mass M of gas contained in it.
By means of the formule (23), (25), (26), we are now able to obtain from the original
solution any number of other ones; for, after the changes have been effected in the
notation, we may proceed to magnify or diminish all the various values of @ until they
are of one size, and we shall thus obtain the solution for a gas at any temperature
whatever.

I shall now proceed to give a table of results when the standard radius @, which
may be conveniently called the boundary, is placed successively infinitely near the
centre, where » = 0 X @), at » = 1 X a;, » =2 X «, and so on. The first line of
entries gives the various values of §8° (computed from (23)), on which the elasticity
of the gas depends; the second line gives wy/p (computed from (25)), or the ratio of

MDCCOLXXXIX.—A. D
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18 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

the boundary density to the mean density of all inside of it; the third line gives
Po/P (computed from (26)), by which we trace the variations of pressure at the
boundary.

TasLe II
Value of o by refepence | @ _ | 1 -9 3 -4 -5 6 6264 | -7 -8
to former solution ay
3 2[— R S 17577 | 6741 | 4826 | 4236 | 4031 | - - : :
= 182 = o dyijdan ) = w 7577 36 31| 8974 | 3972 | -3984 | 4027

o]~
]
ot
(53
[00]

%[=—%mx P [dy®) _ 110000 | -8841 | 6838 | -5333 | 4383 | -3791 | 3410 2986

dy,[da,

Po| . — dPyy [daey ™

PL= Ty, fdn =| o [4662 |1'383 | -772 | 557 | 458 | 407 | -397 | 377 | ‘361
1w |7

Value ofaby reference o -9 10 (125 15 2:0 25 30 ©

to former solution @y ,
LAY 2[: _ L =] -4085| -4152| -4325| -4d9| -av6| 87| 07| 2
wilje = ¥ = gy | = | 4085| 4152|4325 4o 487| -497| 2
%I} —3n PnldnT) _ | oge7| o785 | 2676 264| 267| 269 -273| 3

P dy, [da,

Pol — — oy [de®] _ | . . . . . . . 1
[ TiMEm =] 881 | a7 | 347 | ws6| ms2| 892 06|

The minimum wvalue of w,/p occurs when a/a, = 1'6 very nearly, for, when
aja, =14, 1'5, 1°6, I find wy/p = 26521, 26437, '26425 respectively.* When
rfa, = 1'6, y; = — 38435 and dy,/dx, = 8'5180. The minimum value of p,/P
occurs when a/a, = 11 very nearly, for, when a/a; = 10, 1'1, 12, I find p /P = ‘3169
"3455, "3462 respectively.

When wy/p is a minimum, the density at the centre is 381 times that at the
boundary, and, when p,/P is a minimum, the density at the centre is 129 times that at
the boundary. M. RrTTER finds the pressure to be a minimum when this ratio is 258,
instead of 129. As this corresponds to a/a; = 1°5, this discrepancy between our
solutions is not so large as might be expected from the great discrepancy between
these results, and I cannot but think that my result is more accurate than his.

The minimum value of %% occurs when a/a, == "6264, and its value is '39723.
This value makes the surface density exactly one-third of the mean density, for 4 8% isa
minimum when &, dy,/dx, is a maximum, and this occurs when &, d?y, /dx,* + dy, /dz, = 0;
and, when this relationship is satisfied, wy/p = %.

It is interesting to note that in this case B* is very nearly equal to ¢, so that the

* Mr. Hiun finds that the minimum value of wy/p approximates to %, or '2667. The agreement
between our results is satisfactory.
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 19

total internal kinetic energy of agitation of the sphere of gas at minimum temperature
limited by the radius o is § (§ uM/a) M = § uM?a very nearly. Now, the energy
lost in the concentration of a homogeneous sphere M from a condition of infinite
dispersion is exactly $ uM?/a. It might, therefore, be suspected that ‘397238 is only an
approximation to #, which may be the rigorous value. But my numerical calculations
were carried out with so much care that I find it almost impossible to believe that
there is an error as large as 3 in the third place of decimals, or, indeed, any error at
all in the third figure. Moreover, it would be expected that, if this very simple
relationship is rigorously correct, it would be possible to prove it rigorously, just as
it is rigorously shown above that w/p = %; but I am unable to find any analytical
relationships by which the minimum value of § 8? can be deduced. If my arithmetical
process be correctly carried out, then we ought to find that, when » = 6264, dy,/dzx,
should be equal to — x, d%,/dx* or e"/x®. Now, 1 find that, when r = ‘6264,
dy,/de, = 1577038 and e"/x,®* = 1'5770, so that the two agree to four places of
decimals. I conclude, therefore, that the true minimum of % 8% is *83972.%*

It will be observed that, as a/a, increases to-infinity, § 8* terminates by being equal
to 4. M. Rirter has found that it rises above §, and oscillates about that value an
indefinite number of times with diminishing amplitude, gradually settling down to %
as a/a, becomes infinite. The values in the preceding table are not, however, carried
far enough to exhibit these oscillations of 3 /8% A consequence of this result is that
there are a number of modes of equilibrium of a gas at a given temperature, provided
that the temperature lies within certain narrow limits. This very remarkable
conclusion is rendered more intelligible by Mr. HILL's treatment than by M. RirTer’s.

This point has, however, no bearing on the present investigation.

In any one of the solutions comprised in Table II. we may complete the table of
densities by the formula (24), viz., '

—:],76-1/1

w
p e (2 = ayla)’

and I shall later proceed to do this in the one case which has interest for our present
problem, namely, where the temperature is a minimum, so that a/a, is -6264. The full
numerical results may be more conveniently given hereafter, and it will only be now
necessary to indicate how they are to be computed.

When, for example, r="1 X a,, r/a="1/6264="1596; thus, our equidistant values
of the density and other functions will proceed by multiples of 1596 & up to ‘9578 a,
and the limit of the isothermal sphere is where » = a.

When the temperature is a minimum % 8° = "39723, and we have w, = % p; there-
fore, w/w, = w/} p, and, therefore, if y,, be the value of 7,, when r = 6264 a,,

* This is confirmed by Mr. Hizt. His equation s = # is equivalent to ,? d%y, /d@? + @, dy,/daz; = 0, and
it appears from his tables that s =z =2'517. Now, s = 8/? and the reciprocal of 2517 is -397.
D 2
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20j PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

w/g p =enve,  Thus, for example, at the centre, w/%p is 3214, and when
r = 4789 a it is 5:7417.
The proportion of the mass M which is included in radius a/z is ¥ B°dy/dx
= § fa, dy,ja de, = 35722 dy,/dx,. Hence, the masses may be computed.
At any part of the isothermal sphere gravity ¢ is to be found from
2
g=3BuM L

a

or, expressing ¢ in terms of ¢ gravity at the surface, we have, since G' = pM/a?,

L=ARCL ()

The angular velocity of a body moving in a circular orbit at any part of the nebula,
and its linear velocity v are also easily to be found.

§ 5. On an Atmosphere vn Convective Equilibriwm.

I shall now suppose that a sphere of gas of mass M at minimum temperature is
bounded by an atmosphere in convective equilibrium, with continuity of temperature
and density at the sphere of discontinuity of radius a. ILet v,> be the mean square
of velocity of agitation in the isothermal sphere, and ¢* that at any other radius 7.
Then throughout the isothermal sphere ©* = v,%, but in the layer outside v* gradually
decreases to zero.

Let w, be the density and p, the pressure at radius «, and w, p the same things at
radius 7.

Then, if the ratio of the two specific heats be that deduced from the simple kinetic
theory of gases, without any allowance for intra-molecular vibrations, we have that
ratio equal to 3.

Hence, 4
w\3
) = p [ —
s Pol 7y )
and
1,2 wt A
g V7 = —3 = 7V -
3 Zf’ow(;r 8%\,
also
d p w 3
ﬁ:%.&w‘?dw:%.%v&d —
w W' w,

Now, the equation for the hydrostatic equilibrium of the layer is

7 dp + uM + dmp jr wrtdr =0. . . . . . (28)

w dr @
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 21
Let
=2 =2 _(®y
T = v \w,/)’
and we have
»dp 5 1.9, 9
w ’l"— —2.3"1)0 a%,
vl a
[.LM-——" %2 ’
3uM M. .
dmpa® = 2 = £ gince w, = 4 p rigorously,
P Wy '
_ e
= B
Hence, our equation is
5 oo % 1.4 :
pM < — &R -+ 14| S det =0. e (29)
dx z & ‘ .

It is obvious the ¥ 8* M dz/dx is tlie whole mass (expressed in terms of the mass of
the isothermal sphere) enclosed inside of radius a/x. The differential equation to be
satisfied is

) A% &

B —=0. . . . . . . . . . (39

67 der oot

We have seen in the last section that 3 82 = 89728, and, hence, §B°= '99308.

This equation is not so easy to solve as that in the last section, and I have not
succeeded in finding the general law of the coefficients in an expansion. Nevertheless
it is easy to find a series which will do all that is required. ‘

Let ¢ be any value of « for which we know z and dz/dwx, and let

E=ux—c
Assume

z=z0{1+A1§+A2§2+A3!§3+-'-}-

Then, if the suffix 0 indicates the value of a symbol when @ = ¢ and £ = 0, we
have

% = 2

dz
(@), = 4o

d%

2\ 6 x
dxz 0“ FEBE.E{’

But


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Vo

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

22 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF
and
6 2’0% 3 20%
2A2z0=—52§§'é4’ or AQI:—B—BE.CT,

so that, if 2z, and (dz/dx), are knoWn, A, is known.
The differential equation (30) which we have to satisfy is

B (E+c 4@““ — 2,

LRl

or

Now, by expansion,

2<§>%_-—_2+SA1f+3[A2+‘%A2]52+3[A + 14,4, — A 5] 8
0 + 3[4, +3 (4,45 + 142 — 1424, + & LA ¢

+ 3[4s + $ (4,4, + 4y d5) — § (4,245 + 4,4 + {544y — 1h54,5] €
o 8 [dy+ 3 (Aydy + Agd, + 3AR) — (A2, + 24,45, + 3AD)

+ 15 (4,°4s + §4,°45°) — 1is4,* 4y + 15554,°1 €

o 8[Ay + H(Ay Ayt Aydy b AA) — M A2, 424, 4,4, + A, A2+ A2A,)

s (A4, 4 842 A, A, + A AP) — i (A4, + 24542)

+ ared Ay — 554 E+ o 0 L o L (381)
And
1 + A A, 4 A, 6 _
A<§+1> @(z/z0)=2+<3.2A—2+ 2. 1>§+<4 3. Z2+_ 3. 2j+—2 2. 1>§2
I AP PR B P I |
+<5.4A2+043A2+ 32A2+ >
A, 4 A, 6 A, 4 4, 1
+<6.5;4‘2+E542+-—43Z+—32Z~+—4 >§:4,
A A, A5 4 A
+<7’6l4_:+_65A+ 54;4 +§43:4-+ )55
+... .. (32)

By equating the coefficients in (81) and (32) we are able to determine the 4’s. The
law of the series (32) is obvious, and sufficient of the series (31) is written down to
enable us to find 4,, We can, however, obtain a good approximation to higher
coeflicients, because the coefficients in (31) become relatively unimportant.
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 23

- We now begin the solution with

dz 1 . 2 1
e=1 =1l <dx>0_%@_ 1:0070, <?)0-~ — 5= — 10070,

Hence,
A, = 10070, 4, = — 5085,

whence I compute
Ay=+-41782, A,=—'30068, A;= 416175, A;=—'01306, A, =—-1333,
AB == + .266, A9 _ - '378, Alo == + .4:8, Al]. = e '6.

‘With these coefficients I find

R
a L. (39)
z = 9123 ‘8160 7089 5887 ‘4525 2982

Then, evaluating 2~*2%, and combining the several values by the rules for integration
of the calculus of finite differences, I find

T _ 12 12 12 12 12 12 W
a - 11> 10> b 8 » 7 [
& r (34)
%,32 EL—W =... 121 1:35 1527 1729 19513
J

When r = 2, we begin a new series with

1 d 19513
[ — 0 ¢ —_— - ) = T e .
c=%, =282, 4= (z dx>0_ 9907 x 2983 — T 6'9894,
1 d% — 2t )
4, = <2z d_x5>0" s = — 43686

From these I compute 4y = — 2:744, 4,= + 21365, Ay = — 45409,
Ay =+ 9932, A, =+ 319

It appears that z vanishes when & — ¢ = — 141 or = *359.

It follows, therefore, that four equidistant values of x lying between » = 2a and
r == a/359 = 2786 a correspond tox — ¢ =0, x —c= — 047, & —c= — '094,
x —c= — ‘141.

For the first of these, where » = 2 a, we have z = 2982, and for the last, where
r=2786a, z=0; and, when & — ¢ = — *047, or r = a/453 = 2208 @, I find
z = 2031 ; and, when x — ¢ = — '094, or r = /406 = 2'463 a, I find z = *1033.
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24 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

Finding x=*2} for these four values and combining them by the rules of integration,
I find

%,89?;:2'1767, when r = 2:786 a. N 1)

We thus see that the mass of the whole system is 2:1767 times the mass of the
isothermal nucleus, and its radius is 2:786 times the radius of the nucleus.

The mass of the isothermal nucleus is thus 46 per cent. of the whole. M. RiTTER,
taking the ratio of the specific heats as 7 instead of §, says that the proportion is
about 40 per cent.

§ 6. On a Gaseous Sphere in ““ Isothermal-Adiabatic” Equilibrium.

M. Rirter calls a sphere, with isothermal nucleus and a layer in convective
equilibrium above it, a case of isothermal-adiabatic equilibrium. Since the height of
an atmosphere in convective equilibrium depends only on the temperature at the base,
and since the isothermal nucleus in our numerical example is at minimum temperature,
the thickness of the adiabatic layer is a minimum, and the isothermal nucleus a
maximum.

We are now in a position to collect together all the numerical results of the last
two sections in a form appropriate for our subsequent investigation. It will be
convenient to refer all the densities and masses to the mean density and mass of the
isothermal nucleus. Gravity may also be referred to gravity G at the limit of the
isothermal nucleus, and velocity to v, the mean square of velocity of agitation in the
iscthermal nucleus.
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26 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

§7. On the Kinetic Energy of Agitation and its Distribution tn an Isothermal-
Adrvabatic Sphere of Gas.

We shall now consider what would be the distribution of kinetic energy in the
nebula if each meteorite (or molecule) were to fall from infinity to the neighbourhood
where we find it, and were to retain that energy afterwards. This will give the dis-
tribution of energy in a swarm of the supposed arrangement of density, if the rate of
diffusion of kinetic energy were to be infinitely slow, and if there were no loss of energy
through imperfect elasticity.

The square of the velocity of a satellite in a circular orbit is one half of the square
of the velocity acquired by the fall from infinity to the distance of the satellite from
the centre. If the concentration has proceeded as far as radius r, and if a meteorite
falls from infinity to distance r, then, if U be its velocity, and v the velocity in a
circular orbit at distance 7,

in the isothermal sphere,
=B 'w—a— = 29 d , in the adiabatic layer.
In these formulee, by the definitions of ¥ and z,

y = log, <§%> in the first, and z = <ﬂ>q in the second.

Wy

From these formule v® was computed in Table III.  The value of v or LU? gives
what may be called the theoretical value of the kinetic energy, because it gives us a
measure of the amount of redistribution of energy by diffusion and loss of energy
by imperfect elasticity, which must take place before the whole system can assume the
form of an isothermal adiabatic sphere.

~We will now go on to consider the total potential energy lost in condensation.

We have seen that the potential energy lost by the fall of a single meteorite is
Tv2x dy/de in the isothermal part, and §v ¢ dz/dx in the outer part.

Now, in the isothermal part a spherical element of mass is

—_ IZLIBZ A

and the energy lost by its fall is

dy &y

— B0
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Hence, the whole energy lost in the concentration of the isothermal nucleus is

dy d®
%Mﬁ%(ﬁ.j 2 Y g,

dw dx?
But 4
WPy -f?ﬁ@,_rf’{’ 0
—Lwdxdxgolx__ ; ol:c-Slw‘iolx e
Al
3<dx> e
9 9w0
TR B

Hence, the energy lost is Mu,’ < — %> But in an isothermal sphere of minimum

temperature w, = %p, and thus the total lost energy is 2Mwv2
Again, in the adiabatic layer an element of mass is

— MR T dw = + M2, da,
and, therefore, the energy lost by its fall from infinity is
RO % dx,

and the whole loss of energy is the .integml of this from # =1 to = *359. When
x=1,2z=1, and when z = *859, 2 = 0. Hence

Loty =246 L d
Paw T TITE A"
359 *869 «

Thus, the whole energy lost in the adiabatic layer is

1
2|1
Mg [:3 + j 359 dx]

Add this to the energy found before for the isothermal part, and the whole lost
energy of the system is found to be

M%( +j359z"dx] . (38)

Now let us evaluate the total kmetw energy existing in the form of agitation of

molecules.
E 2
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28 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

In the isothermal part it is clearly 3Mwv? In the adiabatic part it is half the

element of mass into the square of velocity of agitation integrated through the layer,
2

. zT? o v
that is to say, 3. M = dax X v*, and, since z = 5 We have
0

1My [1 + f %dr]
359
for the total internal kinetic energy of agitation. This is rigorously one-half of the
energy lost in concentration.
Hence, if a meteor swarm concentrates into this arrangement of density, one half of
the original energy is occupied in vaporising and heating parts of the meteorites on

impact, and the other half is retained as kinetic energy of agitation.
1

;; dx = -643. Hence, the potential energy lost in
859

concentration is My, (1'643), and that part of it which is retained as energy of
agitation is $Mv?(1°643). The whole mass of the system is 21767 M, and we may,
therefore, write these

7548 (2°1767 M) v and  § X 7548 (21767 M) v,

I find by quadrature that j

It is clear then that the average mean square of velocity of agitation of the whole
system is ‘7548 v%* Or, shortly, the average temperature is very nearly £ of the
temperature of the isothermal nucleus.

It follows from this whole investigation that for any given mass of matter, arranged
in an isothermal-adiabatic sphere of given dimensions, the actual velocities of agitation
are determinable throughout.

§ 8. On the “ Sphere of Action.”

When two meteorites pass near to one another, each will be deflected from its
straight path by the attraction of the other. The question arises as to whether the
amount of such deflection can be so great that the passage of two meteorites near to
one another ought to be estimated as an encounter in the kinetic theory.

We shall now, therefore, find the deflection of two meteorites, moving with the
mean relative velocity, when they pass so close as just to graze one another.

The mean square of relative velocity in the isothermal portion is 20%, and this may
be taken as the square of the velocity at infinity in the relative hyperbola described
The angle between the asymptotes of the hyperbola is the deflection due to this sort
of encounter.

Let , € be the semi-axis and eccentricity of the hyperbola. Then, if ebe large, the

# M. RirTER gives ‘741 in place of ‘755, but, as already remarked, he uses a different value for the
ratio of the specific heats.
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angle between the asymptotes is 1 /e, and, if 1s be the radius of either meteorite,
the pericentral distance (when they graze)is s. Therefore,

s=a(e—1)
By the law of central orbits
2%2 —_ il .
o
Therefore,
2vy%s
=024,

But, since v? = B8°uM/a, we have

6—2,35”

ma

The unity on the right-hand side is negligible, and, since 180/ is the deflection in
degrees, that deflection is

180 @d ees.
omB? M egr

Now, if § be the density of the body of a meteorite, m = § #8s*, and, therefore, this

expression becomes
15° 80032

e
Let us find what s must be if the deflection is 10°; we have

s=8 MSCLS

We may, for a rough evaluation, take B as unity instead of 1+/6/5, and suppose a to
be equal to the distance of Neptune from the Sun (viz., 4'5 X 10 cm.), and, as a.
very high estimate of the value of 3, let us suppose the density of a meteorite is 10.
Then, since the Sun, M, = 2 X 10% grammes, and M is about a half of the Sun’s
mass, we have

33 3
§= [3 x 4-?3 . igm x 10] = (15 X 10%) = 4 X 10°

Hence, m = 2 #8s* = L X 10 X 64 X 10%= 38 x 10% grammes, in round numbers.

But the Earth’s mass is 6 X 10% grammes, and therefore the meteorites are one-
twentieth of the mass of the Earth.

Tt follows, therefore, that, with such small masses as those with which the present
theory deals, the deflection due to gravity is insensible, and we need only estimate
actual impacts as encounters.

Hence, the radius of the sphere of action of a meteorite is identical with the

diameter of its body.
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§9. On the Criterion for the Applicability of Hydrodynamics to a Swarm of Meteorites.

The question at issue is to determine within what limits the quasi-gas formed by a
swarm of colliding meteorites may be treated as a plenum, subject to the laws of
hydrodynamics. The doctrines of the nebular hypothesis depend on the stability of
a rotating mass of fluid, and that stability depends on the frequencies of its gravita-
tional oscillations. Now the works of PoiNcar# and others seem to show that
instability, at least in a homogeneous fluid, first arises from one of the graver modes
of oscillation, and the period of the gravest mode does not differ much from the
period of a satellite grazing the surface of the mass of fluid. Then, in order that
hydrodynamical treatment should be applicable for the discussion of such questions of
stability, the mean free time between collisions must be small compared with the
period of such a satellite. Another way of stating this is that the mean free path of
a meteorite shall be but little curved, and that the velocity of a meteorite shall be but
little changed by gravity in the interval between two collisions. This must be fulfilled
not only at the limits of the swarm, but at every point of it. The condition above
stated will be satisfied if the space through which a meteorite falls from rest, at any
part of the swarm, in the mean interval between collisions is small compared with the
mean free path. If this criterion is fulfilled, then, in most respects which we are
likely to discuss, the swarm will behave like a gas, and we must at present confine
the consideration of the matter to this general criterion.

It would be laborious to determine exactly the space fallen through from rest,
because gravity varies as the meteorite falls, but a sufficiently close approximation
may be found by taking gravity constant throughout the fall and equal to its value at
the point from which the meteorite starts.

We have already denoted by ¢ the value of gravity at any part of the swarm, and
have tabulated it in Table I1I. in terms of G or uM/a® v

Now the mean interval is 7'= L/(v,/8/3w). Hence, if .D be the distance fallen in
this time,

. 9 gfﬂ 3
D=}gr =320
But
_ 7( M\ sp ™ G _ 1
L_.Z<M>w 2 and 2= B
Therefore,
DL dym el L1, |
L™ 20 M & {832 o Teel) ~ 2 e e (8)

The factor F) has been tabulated above in Table IIL, and it increases from the
centre to the outside. ‘ R
This criterion may be regarded from another point of view, for, if the meteorite be
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describing a circular orbit about the centre of the swarm, D is the deflection from
the straight path in the mean interval between two collisions. Then the criterion is
that the deflection shall be small compared with the mean free path.

We may consider the criterion from again another point of view, and state that
the arc of circular orbit described in the mean interval shall be a small fraction of
the whole circumference.

The linear velocity v in the circular orbit is given by

And the mean interval I'= L/[v ./ 8/3w]. Hence, if 4 be the arc described with
velocity v in time 7,

3 LI* g VA L 3
{2 — ——. . — . y kL .
4P = ¢ & P G = Py G nearly, since ¢ 3= 988

But the whole arc of circumference C'is oma/x.
Therefore,

C~ 20 7 w,

_ L My om [ [g/GYat )L My om ;
=30 3 F Bl Coral) = Fooen o 39)

The factor F, has been tabulated above, in Table ITI,

§ 10. On the Density of Meteorites and Numerical Application.

It is necessary to make assumptions both as to the mass and the density of the
meteorites. We have a right to assume, I think, that the density 8 is a little less
than that of iron, say about 6, and we may put 478 equal to 25. Then we have

3 253
wds® = 283, and 5s.

Ol
%3

m =

There is but little information about the average size of meteorites ; but, if we retain -
the symbol s, it will be easy, by merely shifting the decimal point in the final results,
to obtain results for all sizes. Thus, if s =1 cm., m = 3% grammes; if s= 10 cm.,
m = 3% kilogrammes; if s =100 cm., m = 3} tonnes, and if s= 1000 cm.,
m = 3125 tonnes. I shall, therefore, keep s in the analytical formule, and put it
equal to unity in the numerical results.

In the first place, making no assumptions as to the density or masses of the
meteorites, we have

My= 21767 x M, %B>=-39723.
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Then, by substitution in (10) and (11), we have

vy = u X 10786918—10 N
L=1X% 10038781 m|s*
w/5p
T =X 100'4:6863_7%—/8_
wmww] P e e . (39)
D l
7 =5, X 107X I, ><
4 1
£ -4 033781 m
o= 5, X 10 X F, >< 5

We will now apply this solution to a case which will put the theory to a severe
test. Suppose that the limit of the sphere of uniformly distributed energy of
agitation is nearly as far as the planet Uranus, so that, say @ = 16a,. Then the
extreme limit of the swarm is at 44}a,; but the orbit of the planet Neptune is at
30a,, so that the limit is further beyond Neptune than Saturn is from the Sun.

Now, if /oy, = 16, I find

w = 105817 ¢m, per sec. 7
= 10%87%¢, per annum,

7 = 10416808 geconds Coe e (40)
= 106968910 yeayg

Introducing these values in (39) and puttm;r 2s for m/s?, I find

v = 1'141a, per annum = 5374 kilom. per sec.

L s

= X

T = 10750 X i) L @)
% —_ 106'4489—108F1

‘g = 106480-105F

-/

Now we have in Table III. the logarithms of the several factors, which oceur last in
these formulse (41), at various distances from the centre.

It will suffice for our purpose only to take every other value from Table IIL. The
distances from the centre are expressed in terms of the astronomical unit distance,
viz., the Earth’s mean distance from the Sun. The mean free path is expressed both
in the same unit and in kilometres ; and the mean intervals between collisions in
days. The criteria D/L and A/C are, of course, pure numbers. Table IV., as it
stands, is applicable to meteorites weighing 3% grammes, but by shifting the decimal
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point one place to the right in the last four rows of entries it becomes kilogrammes,
one more and it becomes tonnes, and another, thousands of tonnes, and so on.

IV. ———TABLE of Results.

The meteorites weigh 8% grammes, and have the density of iron. The swarm
extends to 441ay, o, being Farth’s distance from Sun.

Sun. | Asteroids. Saturn. Uranus. Neptune.

Distance from}i: 0 | 255 | 766 | 1277 | 16 | 192 24 32 |44l
centre a,

square in kilo-

Velocity of mean
v ==
metres per sec.

537 537 537 537 537 4:85 412 293 0

Mean free path, §= 00028 | ©00038 | 00157 | -00511 | 00900 | -0122 | 0199 | ‘0552 | o
T, kilom, = 41,600 | 57,000 |233,000 | 760,000 1,340,000/1,810,000[2,960,00018,210,000| o

Mean free time’}T: 097 | 133 | 345 | 178 | 313 | 470 | 902 | 3517 |w
in days

“0000167 -0000832 | 1000195 |-000278 |-000387 |-000709 | 00279 | oo

Criterion,

Qlk | Ny

Criterion, = .. /0000113 |10000295 |0000633 |-0000895 | 000111 | 000174 | -000497 | oo

i

The incidence of the several planets in the scale of distance is roughly indicated by
the names written above.

The criteria show that, if the meteorites weigh 3% kilogrammes, the collisions are
frequent enough, even beyond the orbit of Neptune, to allow the kinetic theory of
gases to be applicable for such problems as are in contemplation. For, when r/a = 32,
the two criteria (with decimal point shifted one place to the right) are ‘028 and ‘005,
both small fractions. But, if the meteorites weigh 3% tonnes, the criteria cease to be
very small, about 7/o = 24. If they weigh 8125 tonnes, the applicability will cease
somewhat beyond where the asteroids now are.

I conclude, then, from this discussion that we are justified in applying hydro-
dynamical treatment to a swarm of meteorites from which the solar system originated,
even in the earliest stages of the history of the swarm.

This discussion has, of course, no bearing on the fundamental hypothesis that
meteorites can glance from one another on impact with a virtually high degree of
elasticity; nor does it do anything to justify the assumption that a swarm will consist
approximately of a quasi-isothermal nucleus with a quasi-adiabatic layer over it.
This latter assumption I have been led to by the considerations to which we now pass.

MDCCCLXXXIX.—A. ¥
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§ 11. On the Diffusion of Kinetic Energy and, on the Viscosity.

In order to discuss these questions, it will be well to begin with a simple case of
fluid motion. ‘

Consider two-dimensional motion, in which there are a number of streams of equal
breadth moving parallel to y with velocity V, and, interpolated between them, let
there be strata of quiescent fluid; suppose then that we wish to find the motion at
any time after this initial state. Let the boundaries of the streams V be from = = m/
to 4 (2m 4 1) 1. Then, if » be the velocity at x, parallel to y at time ¢, and v the
kinetic modulus of viscosity, the equation of motion is

da d*u

it — ¥ da*’

The solution of this being of the form e~#* cos px, the complete solution satisfying the
initial condition is—

2V T , S bara
u=5%V+ - [e"’“/lz cos - — L e 0™ cog e + L e B cog 7; — .. ]
Now, if we refer time to a period =, where 7 = I?/z%, then after a time 6, which is
greater than 7, the solution is sensibly

[ 4 T
u::—]Q—V'LI—l—@cosT].

It is clear that the maximum of % occurs when # = 0, and the minimum when « =/,

and that they are
4
1 —_ .
5 V[l + - eo]

Hence, the difference between the maximum and minimum is 4 V/me’. Therefore,
the ratio of the greatest difference of velocities after time 7 to the initial difference of
velocities is 4/me’.  When 6 is 1, 2, 3, this ratio assumes the values 1/2°135, 1/5°804,
1/15°73 respectively. Thus, after three times the interval 7, the difference of velocities
is small. The time 7 may be therefore taken as a convenient measure of viscosity.

In our problem the streams must be taken of a width comparable with the linear
dimensions of the solar system. I therefore take /, the width of the streams, as equal
to ag, the Earth’s distance from the Sun, and we have

a?
7=

)

Now, according to the kinetic theory of gases, the kinetic modulus of viscosity is
1/m into the mean free path multiplied by the mean velocity. Hence, '


http://rsta.royalsocietypublishing.org/

N
I \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 35

1
V:—L<’U —8—>*
T 3

T=<%>><%9>,\/§% Ce L (42)

If we apply this formula to the solution which has been already found in Table IV.,
we obtain the following results :—

Hence, we have

— 0, 255,  7'66, 1277, 16, 19-2, 24, 32,

0

ryears 1082, 792, 193, 592, 837, 275, 198, 617

These results are applicable to meteorites weighing 3% grammes in a swarm
extending to 44% o, If the meteorites weigh 3% kilogrammes, the values of = would
be one-tenth of the tabulated. values. If the streams were ten times as broad, the
periods would be a hundred times as long. |

Now the periods = in the above table, even if multiplied by a thousand, must be
considered as short in the history of a stellar system. It thus appears that the quasi-
viscosity must be such that a swarm of meteors must, if revolving, move nearly
without relative motion of its parts, at least in the early stages of its evolution.

But let us consider the values of = at different epochs in the history of the same
system. If @ be the radius of the isothermal sphere the formule (9) and (10) show
that L/a, varies as «®, whilst v/a, varies as a~% Hence 7 varies inversely as ol
Thus, as the swarm contracts, the periods 7 increase rapidly.

Thus, later in the history, the viscosity will probably fall off so much that equalisation
of angular velocity may be no longer attained, and we should then have the central
portion rotating more rapidly than the outside, with a gradual transition from one
angular velocity to the other.

The modulus » gives, besides the viscosity, the rate of equahsatlon of the kinetic
energy of agitation ; this corresponds in o true gas with the conduction of heat. The
conclusion at which we thus arrive appears to justify the assumption that the whole
of the central part of the swarm is endued with uniform kinetic energy of agitation,
and that the mass of the quasi-isothermal nucleus is the greatest possible. With
regard to the assumption that the nucleus is coated with a layer in adiabatic or
convective equilibrium, it may be remarked that the velocity of agitation must
decrease when we get to the outskirts of the swarm, and convective equilibrium will
probably satisfy the conditions of the case better than any other. Further considera-
tions will be adduced on this point in the Summary.

- * Mever, ¢ Kinetische Theorie der Gase,” p. 321. The 1/ is derived from a numerical quadrature
which gives the value 318, and it is apparently only accidentally equal to 1/=. The v +/ (8/37) is the
mean velocity denoted Q by MEYER.

T 2
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§12. On the Rate of Loss of Kinetic Energy through Imperfect Elasticity, and on the
Heat Generated.

In a collision between two meteorites the loss of energy is probably proportional to
their relative kinetic energy before impact. Therefore, the amount of heat generated
by a single meteorite per unit time is proportional to the kinetic energy (say /) and to
the frequency of collision. By (10) the frequency, or reciprocal of T, varies as vws®/m ;
but m*v is equal to (2A)}, and s*m™t varies as m™. Hence, the frequency of collision
varies as A*wm™, and the amount of heat generated by a single meteorite per unit
time varies as lwm™. But, if p be the quasi-hydrostatic pressure, p varies as hwm™1,
and, therefore, the heat generated by a single meteorite varies as hipm?.

Then, to find the total heat generated per unit time and volume, we have to multiply
this by the number of meteorites per unit volume, that is to say, by wm™, which is
equal to 8ph~L.

Thus the amount of heat generated per unit time and volume is proportional to
p*mfhr With meteorites of uniform size, and with uniform kinetic energy of
agitation, this becomes simply the square of the hydrostatic pressure.

The mean temperature of the gases volatilised by collisions must depend on a
variety of considerations, but it would seem as if the temperature would follow, more
or less closely, the variations of heat generated per unit time and volume.

§ 13. On the Fringe of a Swarm of Meteorites.

The law of distribution of meteorites found above depends on the frequency of
collisions. But at some distance from the centre collisions must have become so rare
that the statistical method is inapplicable. There must then be a sort of fringe to the
swarm, which I attempt to represent by supposing that beyond a certain radius & (not
the same as the former @) collisions never occur, and each meteorite describes an orbit
under gravity. '

Now, at any point gravity depends on the mass of all the matter lying inside a
sphere whose radius is equal to the distance of that point from the centre of the
swarm, Hence, the value of gravity depends on the law of density of distribution of
the meteorites, which is the thing which we are seeking to discover.

We suppose, then, that from every point of a sphere of radius a a fountain of
meteorites is shot up, at all inclinations to the vertical, and with velocities grouped
about a mean velocity, according to the exponential law appropriate to the case. As
many meteorites are supposed to fall back on to the surface as leave it, and this
inward cannonade against the boundary of the sphere exactly balances the quasi-
gaseous pressure on the inside of the sphere. Thus, the ideal surface may be annihi-
lated. Since the falling half of the orbit of a meteorite is the facsimile of the rising
half, we need only trace the body from projection to apocentre, and then double the
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distribution of density which is deduced on the hypothesis that all the meteorites are
rising. Again, since every element of the sphere shoots out a similar fountain, and since
collisions are precluded by hypothesis, we need only consider the velocity along the
radius vector. As far as concerns the distribution of density, it is the same as if each
element shot up a vertical fountain; but, of course, in determining the vertical
velocity, we must pay attention to the inclination to the vertical at which the
meteorite was shot out.

The mass of the matter inside the sphere, whose attraction affords the principal
part of the force under which the meteorites move, is sxy M, and, for the sake of
simplicity of notation, we shall take 2uM/a as being unit square of velocity.

Now, let 4 ¢ (r) be the potential at the point whose radius is 7, and suppose that a
meteorite is shot out from a point on the sphere with a velocity w, and at an inclina-
tion e to the vertical ; then, if », 6 be the radius vector and longitude of the meteorite
at the time ¢, the equations of conservation of moment of momentum, and of energy
are —

r? a6 ua sin
o W _ i
i &

dr\? dg\? 9
() + (1) =40 =w— 4.
If we write f(r) = ¢ (a) — ¢ (r), and eliminate dé/d¢t, we get

a .
72 g: =7 {r (Wt — f(r)) — ua?sin® €},

Now, we are to regard dr/dt as the vertical velocity in a fountain squirting up from
a point on the sphere. Then, since f(a)=0, it follows that at the foot of the
fountain »* dr/dt is equal to a®u cos e. If, therefore, 8 be the density at the height o,
and 8, at the foot, the equation of continuity is

Ir
8 #? El? = §, @*u cos €.
Therefore,

a*u cos €
*
r {12 (W — f(2)) — ua® sin? e}

S _
&

But now let us suppose that the meteorites are not only shot out at inclination e,
but at all possible inclinations from 0° and 90°. It is then clear that this expression

must be multiplied by sin ed ¢, and intégrated. Hence, if 8 now denotes the integral
density,

S — j “ @ducosesinede )
- o7 {12 (1 — f(r)) — uPa® sin® e}} ’
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where C is a constant which it will be unnecessary to determine, and where the limit
€, will be the subject of future consideration.,
Effecting the integration, we have

= — ’L?; {r? (W — f(r)) — v sin® €}}, between limits,

%L {9 (08 = F(1) ¥ = 5 (12 = F(r) ) — wia? sin® ]} |

It is obvious that, if ? is greater than 7*f (r)/(r* — a?), the square root involved in
dr/dt does not vanish for any value of €; and, hence, we must simply take ¢, = 90°.
If, on the other hand, #? is less than this critical value, €, is that value of e which
makes dr/dt vanish.

Thus, our formula divides into three, viz. :(—

o AGIES
Ist. u? greater than T
o . a?\¥ a) H
o= [(uz —fr))— <1- - 72> <u2 - %;%Q ]
2 VAG
2nd. u? less than T atje

// 8

3rd. «?less than f(r); § = 0.

The physical meaning of this division is as follows : If we take a station near the
surface of the sphere, meteorites shot out at all inclinations, even horizontally, reach
the height of our station ; and, when they are shot out horizontally, e = 90°. If we
go, however, to a higher region, there is a certain inclination which just brings the
meteorites at apocentre, where dr/di = 0, to our height ; but those shot out more
nearly horizontally fail to reach us. Still higher, not even a meteorite shot up
vertically can reach us, and the density vanishes.

These results only correspond to a single velocity u; but, if »* be the mean
square of the velocity, the number of meteorites whose velocities range between u and
u—du is proportional to u?e=*"*" du.* Hence, we have to multiply & by this expres-
sion, and integrate from u = o to u =

Now, the first term of the first form for § is the same as the second form ; and in
the third form & is zero ; hence, this first term when multiplied by the exponential has
to be integrated from u® = o to f(r). The second term of the first form of § has to
be multiplied by the exponential, and integrated from w? = o to f(r)/(1 — a?/r?).

Now, for the first term put :

(= f ()"

§1Q

3

o (W =1 ()=

* OsEAR MEVER, ‘ Die Kinetische Theorie der Gase,” 1877, pp. 271-2.
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therefore,

2\
u(w = f(0) du =) a*d,
and the limits of x are «o to 0.
Hence, the first term is

G <_21’_2>l ¢ =372 J 2e—? du
3 0

Again, for the second term put

B o SO \_ o
2'02<u 1 — a?r® =%

and similarly introduce it into the second term, and we have

208\t \b »
— 070V [ 1 =%\ eyroveea—am { 22 0= d.
< 3 > < r 2> 0
From these expressions we may omit the constant, factors ; and, if w be the density
at height r, whilst w, is the density at the sphere,

2 1
W g=3/we <1 - %>56—3f(',-)/21;2<1—42/7-2)'
w, 7

In this formula unit square of velocity is 2ul/a ; but we have elsewhere written
v® = BuM/a ; hence, if the special unit of velocity be given up, we may write 8% in
place of 2v% and the result becomes

K <1 — a;fz)%e—Sf(r)/ﬁ”(l—-u?/r?). NPT
0, 7?

It is interesting to observe the connection between this law of density and that
which would have held if the gaseous law (due to collisions) had obtained. In that
case, since ¢ (r) is the potential, we should have had

1dp d

e —E () =0

Now, p = $v*w, and, therefore,

3,
logw—,.¢ (r) = const.

3
= log w, — 5 ¢ ().
Tlus,

log 2 = = 2. [ (a) = $ ()] = = 55 /),

or

Y e YR = o= Y,
%o
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The first term of our result, then, is exactly that resulting from the gaseous law,
and the second subtractive term represents the action of the diminished velocity with
which the meteorites move in the higher regions, when they are liberated from the
equalising effects of continual impacts.

By previous definition, uM f(r) /& is the excess of the potential at radius @ above
its value at radius 7 ; hence,

wM . J’ dmp J’ 9
af())_ Il I dr . dr.

Now, since f(r) is only required for values of » greater than «, we may put w equal
to its mean value p, between the limits 0 and a. Thus,

J'r wrtdr = j-r wr? dr 4+ Fpad.
0 a

Hence,

r 7 dr rla 2
sy =" Lo drt o [ G = (1= 2) 4 5[5V 2
aTJa a? 7 1 &01p

If this form for f(r) were substituted in (43), we should obtain a very complicated
ditferential equation for w. We may, however, find two values of f(r) within which
the truth must lie.

Furst, if we neglect the attraction of all the matter lying outside of radius a, the
second term vanishes, and we have,

f (7 = 1 — ? ;
and the law of density is
w

Q i
T e A lmain B __ <1 — a_o>§e3/(l+a/r)ﬁ”. Lo (44)
72

W,

Secondly, we may suppose the density to go on diminishing according to the inverse
square of the distance. We have seen in the preceding solution and tables that this
is roughly the law of diminution for a long way outside the isothermal nucleus.
According to this assumption, w = w, ¢*/r®. Hence, in the second term of f(r) we
put w = w, a*/r* = w,/z% ’

Hence,

P

U g, (g Yy,
L—pz dz = Ldz_ P (z = 1),

and

w, (12 — W a w r
r-—l—- OJ’ d4—<,z——9>/1——~> - Clog . . (45
S(r) + ) \L 75 s, (45)
The substitution of this value in (48) gives the law of density.
In order to see the kind of results to which these formulee lead,let us suppose that, when
we have reached radius 2 in the adiabatic layer, collisions have become so rare as to be
negligible. Then the symbols in the formulee of this section have numerical values; and,
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in order to distinguish them, let them be accented, so that, for example, we write
o, B2 p', &e., in (43), (44), and (45), in place of a, B2 p.

Now Table III. shows that, when o' = 20, M’ == 195 M = 2M nearly. Hence,
M'jo' = M/a nearly. But, at radius 2a in Table 111, v*/v,> = ‘298 = '3, and this *
is what we now write v'® or BuM’/a’, whilst v* = BuM /a. '

But B = ¢ very nearly ; hence, 8?/8° = ‘3, or B = "36.

Thus, 3/82 = 8:333.

Then, substituting 20 for o, and noticing that in Table IIL., w/tp = ‘163, when
7 = 2q, the first law of density (44) becomes
Y — 163 [6—%5—(1-%/» — (1 — 4 f%;)ée—?/(1+2a/r)].

Ve

3P (46)

Again, since M'= 2M,and o' = 2a, p' = 1p, ’i”po, =4 X i%’: 4 X 163 by Table III.,
wo/ 3 3

3’

Thus, according to the second assumption, we have by (45)

and ;- = 65 = § nearly.

3f(r)y = (1 — "i—a> + log <é>2, and, since ﬁTl”’ = 278,

() _ 278 <1 - %f—l> + 278 log <2%>2,

B
31 (r) 278 278 r\%
B2 — 4a®r®) 1+ 2afr + 1 — 4a?/r? log <2a> ?

and the law of density is

— ‘163 [6—3]"(7")//3’2 —_ <1 — 4;’_(:?>%6‘"3f(7‘)/ﬁ'2(1—4a2/72):| . L. (47)

w

3p

The values computed from these alternative formulse (46) and (47) will be compar-

able with those in Table IIT.

In Table I1I. we have the value of w/4p computed at distances r/a = 2-208, 2463,
2'786. The following short table gives the result extracted from Table III. for
comparison with the values computed from (46) and (47) :—

rja = 20, 2208, 2463, 2°786.
Convective equilib.,

= 163, 092, ‘033, 0.

First hypoth. (46),

‘163, ‘074, ‘033, *015.

Second hypoth. (47),

SEIESERCSE

= 163, 071, 029, '011.

MDCCCLXXXIX.—A, G
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It appears, therefore, that the results from the two hypotheses differ but little for
some distance outside the region of collisions, and either line may be taken as near
enough to the correct result. We see then that the effect of annulling collisions and
allowing each body to describe an orbit is that the deusity at first falls off - more
rapidly than if the medium were in convective equilibrium, and that further away the
density falls off' less rapidly. At more remote distances the density would be found
to tend to vary as the inverse square of this distance. Thus, the formulse would make
the mass of the system infinite. In other words, the existence of meteorites with
nearly parabolic and hyperbolic orbits necessitates an infinite number, if' the loss to
the system is constantly made good by the supply.

The subject of this section is considered further, from a physical point of view, in
the Summary at the end.

§ 14. On the Kinetic Theory where the Meteorites are of all sizes.

In an actual swarm of meteorites all sizes occur, for, even if this were not the
case initially, inequality of size would soon arise through fractures. Hence, it becomes
of interest to examine the kinetic theory on the hypothesis that the colliding bodies
are of all possible sizes, grouped about some mean value according to some law of
frequency.

If there be two sets of elastic spheres in such numbers that there are respectively
A and B in unit volume, and if the mean squares of the velocities of the two are &?
and B° respectively, and if @ and b are the radii of the spheres of the two sets, then it
is proved that the number of collisions between them per unit time and volume is

24B (0 + b [37 (o8 + B) I'¥

We shall now change the notation, and for & and b write s, and s,, and for « and S
write u, and .

Then, if 8 be the density of the spheres, their masses are 4w8s,* and $m3s,”

The condition for the permanence of condition is that the spheres of all masses
shall have the same mean kinetic energy. Hence, we refer the mass to a mean sphere
of radius s, and the velocity to a square of velocity V2

Then

U = su = V2
Thus, our formula may be written

s {3 (e

% ¢ The Kinetic Theory of Gases,” by H. W. Warsox, p. 11.
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But now suppose that there are spheres of all possible sizes, and that in unit
volume the number whose radius lies between s and s - ds is

4n
b/

Since the integral of this from o to 0 is n, it follows that n is the number of

e~ (g, ¥

spheres of all sizes in unit volume.
If p be the total mass in unit volume, or the density of distribution,

(7, s 8 e
p == | 47ds®. e ds
vl o’
4n *
= %wSo’sj xhe~* da
m 0
4n
= ——47do°.
N
If m be the mean mass, m = p/n ; but m = $78s*; hence,
. 4
&= — o3,
m

and <\3 s\3 4 [/o\3 o\3
&)+ Q=0+ )

If the A spheres of radii s; are those whose radii lie between s, and s, + ds;, and
the B spheres of radii s, are those whose radii lie between s, and s, 4 ds,,

2
A (A et
\mN\o o

B= 20 (%Y oo
N \ao o

Hence, the formula for collisions between the A’s and B’s is

64n? . a\3 TN 8857 _ oa s enyer @5, A5,
S GV (s + ) [<_> + <~>J A3 v D1 O

8 Sy o c o
or, if we write = s,/0, y = s,/0, 1t 18

B @V o (o 4 9P (@ 49 @) = dady. . . . (48)

* Tf the spheres are grouped abouta mean mass, instead of about a mean radius, according to a law of
this kind, the subsequent integrals become very troublesome. Any law of the kind suffices for the
discussion. If, however, I had foreseen the investigation of § 16, T should not have taken this law of
frequency.

G 2


http://rsta.royalsocietypublishing.org/

\
\
A

Py
/\
//'q

e

THE ROYAL |
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a

A
\

A

/J
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

44 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF
But
§ 64 o w32 2P
of= ;¢ and  —(n) = cn

Hence, the number of collisions per unit time and volume between spheres whose
radii range between s, and s, 4 ds,, and others with radii between s, and s, + ds,, is

32

1

| b2,

30 Ven®. (e +y)* (a8 4 %) (ey)i e~V ddy .

q)
o

The number of collisions of a single sphere per unit time is 1/n of this, and, since
2
n = p/m, we have for the collisions of a single sphere the factor —7:—7—,) instead of Vel

Then the total number of collisions of all kinds in unit time, or the reciprocal of the
mean free time, is the double integral of this from o to 0.

For the purpose of carrying out the integration, we may conveniently, as an
algebraic artifice, change from the rectangular axes w,  to the polar coordinates r, 6.
Thus,

[[] @+ 9r @+ e dody

= [ re~” olrr"(sin 0+ cos ) (1 — sin @ cos 0)* (sin @ cos 6): d6.
0 0
Now, if we put r = 2%,

0

1
4.4

(3]

* 11 v ¢ 4 9 ° ” o
j .ra‘e—fz dy' _ 2 f Z]J 6—? dz == 2 . j e-z OZZ.
0 4. 0

0
For the transformation of the second integral, put

z2=—cos ) — sin 0,
and we find

rﬂ(sin 0 4 cos 0) (1 — sin @ cos )} (sin 0 cos )} df = FI% (2 =22 (1 —Midz
N -1

0
+1 ]
= j (2—=2)(1 -- 2N dz.
0
Hence, the whole integral is

0

1
45 e de [ (2= 2) (1 — 2 b,
0 0

and the mean frequency of collision of a single ball per unit time is

15,3028 V(2
tomE mp

re”‘ dz '(1(2 — 2% (1 — 24 .
0 0
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY, 45

The second of these two integrals cannot, I think, be evaluated algebraically, but
its value is easily found by quadratures. I find, then,

1
[[@—2p (1 =2 de = 12999,
0

The former of the two integrals may be evaluated as follows :—
Let

I = r e~ dux,
then, : )
41 = 4 J'o [ e~ dx dy

Fw o et
jo (1 — % sin® ¢) di d¢

— %F" de
= 7 I (45°),

where F' is the complete elliptic integral with modulus sin 45°

“Hence,
I=1aFv*

We thus have the frequency of collision given by

3t o %)’
Lsi._T_ <% 192999 _V_(ﬁ .
T m/p

Now, LEcENDRE'S Tables give
log F' = 2681272,

with which value we easily find for 7" the mean free time, or 1/1" the frequency,

2)* V (2)
— 53318 L2 — 10 V(%)
wip wip

nearly. Coe o (49)

NI
=

If 1/T, be the frequency of collision when the spheres are all of the same size and
mass s and m, and are agitated with mean square of velocity V?, we have, by the

ordinary theory, 1 V (26)? V(2
™ S s
\/ o = 4'093H — mfp ce e e (50)

* 1 owe this to Mr. F'orsyrH, and the result verifies an evaluation by quadratures which I had made.
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It follows, therefore, that in our case collisions are more frequent than if the balls
were all of the same size in about the proportion of 4 to 3.

In order to find the mean free path, we require to find the mean velocity.

If w* be the mean square of the velocity for any size s, the proportion of all the
spheres of that size which move with velocities lying between v and v + dv is
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4 o
T Y dy,

where y® = 3v?/2u”

But the number of spheres of size between s and s + ds, in unit volume, is

An aPe du,
V4

where x = s/o.
Hence, the mean velocity U is given by
1 @ 00
— 10 f j vtyPe~ "7 dx dy.
Tl "

0

Now, ,
3
v=4/%.uy, and $u* =3V or 2Pu = <S> yre t Ve,
a aw
so that
2 2,2 _,
U= iV, and v = -y V.
Therefore,
=V R N A
U= /3 V—"ojo ahyPe™ Y die dy.
But
{ ye ’dy = 3, and j ate™ dop = QJ e~ dz ;
0 0
therefore, ’
B2 (7 o
U= /3 J 2~ dz.
This integral may be evaluated as follows :—
Let
J = [ e~ du,

4J% = 4{ [ 2yPe o0 da dy

I

0
! 7t gin® 26 e 22 4 e )
{ee]

[
»H-—‘

0
[ 2% 8in? </> e~ =1y dp

0

¥ gin? e

[Of A—1s 2¢) s 17 dit dep
an .1_51112

wéj a sm2 ¢)} dé

) @ _ g
T jo (1 —Lsin®¢)? FJ )

O~

i

i
PN

B
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. _ 47
Now,
ﬁ;_@___ﬁ
Jo (L —Rsin® ¢p)! — &

and in the present case k* = k* = L.

Hence,
J=im[2F — F]¥,

where E and F are the complete elliptic integrals with modulus sin 45°.
In LeceENDRE'S Tables, we find

E = 1350644, F = 1854075, and QK — F = 847213.
Then,

%= V& /(2E — F) = 1-91377.

J i

The mean free path
. _ 19188 mjp
L=UT=19188VTI = 53318 (2s)’

and thus

1 Ip

=“2"7§6‘"°" .. e .. . (51)

L 2s)

(3
-

~

If the spheres had all been of the same size, we should have had

_ mfp -1 mp
L= ot s =5 g - - - - - - (52)

Hence, finally from (49) to (52), if there be a number of spherical meteorites, of
uniform density, of all sizes with radii grouped about a mean radius according to the
law of error, and if S be the diameter of the meteorite of mean mass m, and p be the
density of the distribution of meteorites in space, and FmV? their mean kinetic
energy of agitation, then the mean free path L, mean free time 7', and mean velocity
U are given by

1 mp mfp -
L= 5788 § = 1~y Dearly, W[

1 m/p m/p (53
T = 5333 V8= 25 To? nearly, } { )
U= 19138 V = 21 nearly. J

Also the mean free path is about i%ths, and the mean free time about £ of that
which would have held if the meteorites had all been of the same size m and had had
the same mean kinetic energy 4 m V2.

* T owe this to Mr. ForsyrH.
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48 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

§ 15. On the Variation of Mean Frequency of Collision and Mean Free Path for the
several sizes of balls.

Each size of ball has its own mean frequency of collision and mean free path, and it
is well to trace how the total means evaluated in the last section are made up.

We have already seen in (48) that (substituting for o its value in terms of s) the
number of collisions per unit time and volume between balls of sizes s to s+ ds and
balls of sizes s’ to s” + ds’ is

@i

64 2 1 g 3 L 2,2
BTV S @+ 0P (@ 4 ) ) e dway,

where & = s/o, y = §'/o.

But the number of balls of size s to s + ds in unit volume is
A e da,

™

v

Hence, the mean frequency of collision for a ball of size s with all others is

7wt 64n?

. 2 2%_71%200 2 (3 \E =2, — g2
in i(gﬂ'V)ﬁs[O(w-l-y) (@3 + 3 e~ tyte 7 dy.

art

Now,

Therefore, if we write 1/7 for the frequency of collision of a ball of size s with all
others, we have

L

1 2.7 TV (2) [s\} (" VoA -
- = 3;’" .&<9> f ( + 9)* (@ + 2 e dy.

mfp \s/ Jo

Now, the mean frequency for all sizes is given by

1 sg91g. V@)
T—53318 mip
Hence,
T 1 2L ’Tl'% s\! [* FA R
=g 5 | e e dy
='1780-<§>9J’ (@+y)P @4+ PYyrerdy. . . . . . (54)
0

The integral involved here cannot in general be determined algebraically ; but, if
x be very small, or very great, we can find an approximate value for it.
If « be very small, the integral becomeés

L eV dy =3 ./ m and :r]j: ‘118 <S>i-

S
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 49

If « be very large, the integral becomes

0

x L yre ¥ dy = 22} L e " dz.

Now,
s\t__ 2% [s\b ” . : n3
at = (*> = -<—> ) and L e~ dy = tat (28 — F)*.

Therefore, the integral becomes

A , \i (8
Z (28 ~ F) (q)

1
3
H

and with the known values of Z and F this giveé us

2
Z = 282 (§> .

T \ S

For intermediate values of s recourse must be had to quadratures for evaluating
the integral. I have therefore determined, by a rough numerical process, sufficient
values of the integral to render possible the drawing of a curve for the values of
T/r for all values of s. The following table gives the results for the integral
fs (@ 4+ 9)* (#® 4+ ) 4* e=#" dy, which may be denoted by K :—

K
s =3¢ 171,
s =3¢ 2:90
s=¢ 494,
s = 3¢ 12-97,
s = 2¢ 2875 .

If these values be introduced in the formula
%7: 1780 K(:)
we obtain

T/~
s=4¢ ‘86,
s=4%s ‘80,
s=735 88,
s =3¢ 126,
s = 2¢ 1-81.

MDCCCLXXXIX.—A. H
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50 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

These values are used for forming the curve, entitled “ frequency of collision,” in
fig. 1 below, and they are supplemented by the values found above for 7/r, in the
case where s/s is either very small or very large.

The frequency becomes infinite when the balls are infinitely small, because of the
infinite velocity with which they move, and again infinite for infinitely large balls,
because of their infinite size. But it must be remembered that there are infinitely
few balls of these two limiting sizes.

We have now to consider the mean free path, say \, for the several sizes.

If ©® be the mean square of velocity for the size s, the mean velocity for that size is
% 4/(8/8m), by the ordinary kinetic theory.

From the constancy of mean kinetic energy for all sizes, we have

Sut=$TV?,
so that the mean velocity for size s is |
V(s/s)* v/(8/3m).

But, if U be the mean velocity, and L the mean free path, and 7' the mean free
time for all sizes together, we have

v _ 1 L
19138 — 19138 7

V=

Therefore, the mean velocity for size s is

A/ (B[3m) [s\} L __ | i)gﬁ..
19138 \s/ T 4815 s

But the mean velocity for size s is A/7 ; hence,

A /s\% T 4815 1
L= 4815<;> T= 1780 " K
2705
-

When s is very small, we find ML = 4, and, when s is very large, /L = 1'7 (s/s)".
Thus, for small values of s, the mean free path reaches a constant limit 4, and for
large values it becomes infinitely small.

The intermediate values, sufficient for drawing a curve, are given in the following
short table -~

\/L.
s=+4s 1-58.,
&= %g ‘93.
§ =g *55.
8§ == %—g 21,
s = 2¢ 09,
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 51

These values are set out in the annexed figure in the curve marked “free path,”
and are supplemented by the values found above for small and large values of s.
The constant limit 4 falls outside the figure. The horizontal portion of the curve is
asymptotic to the s-axis.

Kig. 1.

| | |
o4 16 18 2 2 2
scorle gf stze (2/5)

I-0

No immediate use is made of these conclusions, but it was proper to examine this
point in the theory.

§ 16.  On the Sorting of Meteorites according to size and its Results,

It is a well-known result of the kinetic theory of gases, that if a number of different
gases co-exist, each gas has the same density as though it alone existed, and was
subject to the resultant forces of the system ; also the mean kinetic energy of agitation
of eachi gas is the same. From this it follows that the elasticity of each gas is
inversely proportional to the mass of its molecule.

Carrying on this conclusion to meteorites, we see that the elastlmty of the gas
formed by large meteorites is less than that for small; and, hence, there is a greater
concentration of large meteorites towards the centre, and there will be a sorting
according to size. The object of this section is to investigate this point.

In §§ 14 and 15, the laws of ‘a kinetic theory were investigated when the gas
consisted of molecules of all masses, grouped, according to a law of frequency, about
a certain mean radius, and molecules of infinite mass were considered to be admissible,
with, of course, infinite rarity. Now, if we were to continue to use that law of
frequency of masses in the present investigation, we should find, as an analytical

H 2
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92 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

result, that the mean mass in the centre of the swarm becomes infinite. The
existence of very large meteorites in sufficient numbers to give statistical constancy
in a volume which is not a considerable fraction of the volume of the whole swarm is
physically improbable. ~We shall, therefore, treat the case best by absolutely
excluding very large masses. When such masses occur, they must not be treated
statistically ; this is a question which I hope to consider in a future paper. Had I
foreseen this conclusion when the investigations of the last two sections were carried
out, a different law of frequency of mass would have been assumed. But the results
of those sections are amply sufficient to indicate the conclusions which would have
been reached with another law of frequency, and, therefore, it does not seem worth
while to recompute the results by means of a fresh series of laborious quadratures.

- Any law of frequency would suffice for our purpose which excludes masses greater
than a certain limit and rises to a maximum for a certain mean mass. For the
present, I do not, specify that law precisely, but merely assume that at some radius,
which may conveniently be taken as that of the isothermal sphere, where » = a, the
number of meteorites whose masses lie between % and x -+ Sz is f(z) 8 ; it is also
assumed that x may range from M * to zero. :

The meteorites whose masses range from @ to « + 8z may be deemed to constitute
a gas. Suppose that at radius 7 the number of its molecules per unit volume is on,
its density dw, its pressure Op, and let the same symbols, with suffix 0, denote the
same things at radius a. Since all the partial gases are in the permanent state, they
all have the same mean kinetic energy of agitation, equal to 3h, suppose. Throughout
the isothermal sphere, this % is constant, and equal, say, to Ay, but varies with the
radius in the adiabatic layer over it. It follows, therefore, that the mean square of
the velocity of the particular partial gas « to « 4 8x is equal to A/x, and the relation
between 8p and &w is

h
op =% - dw.

Let — x be the excess of the gravitation potential of the whole swarm at radius »
above its value at radius .

Then, since each partial gas behaves as though it existed by itself, the equation of
hydrostatic equilibrium of the partial gas x to x + o is

1déop

ax __
ow dr + 0

ar —

The investigation must now divide into two, according as whether we are con-
sidering the isothermal sphere or the adiabatic layer.

The Isothermal Sphere.
Here we have b a constant and equal to Ay, and 8p varies as dw, so that

% This M is not to be confused with M, the mass of the isothermal sphere.
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Ry dw
170 — =
S log Swy X
or
dw
2 — 5= 3x%/ho
dw, e
Now it is obvious that én/8n, = dw/éw,; and, therefore,
on = e~ §p,,.
But, by the definition of f(x),
dny = f(x) 8z ;
hence,

Sn = e=%xlh f (1) 8.

This is the law of frequency of mass « to « + &x at radius 7.
Now, if m, m, be the mean masses at radii » and a respectively,

M
I P€ 6—3X£//tof(w) Clw
0

m = ;

'[M e~ 3l f () da
0

and, if we put y = 0, we obtain m, from the same formula.
It is also clear that, if w be the total density of the swarm at radius »,

w = ‘(ac dn = JﬁM x ¢~ 3l f (1) die.
0

By the definition of x, and in consequence of the supposed spherical arrangement, of

matter, we have

X = [;;1% U; 41rp,w7'%l7°> dr.

If this value were substituted in (57), we should obtain a very complicated
differential equation to determine w, the solution of which is hopelessly difficult.
We may, however, assume without much error that the w in the integral expressing
x is the density of meteorites, all of which are of the same size m’, and which are
agitated with mean kinetic energy 44, If this density be written w, we then clearly

have

— &) loo ~
X= 7 3w % W

The values of w and w, may be extracted from Table I1I. of solutions in § 6.
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54 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF
Then we have
e log ~ = 2, su e
by — m’ gwo—g » SUPPOSE,

where ¢ is rigorously equal to — 8x/h,; but for computing the approximate value
(1/m’) log (w/w,) is to be employed.

In order to proceed to the evaluation of the mean mass at various distances, we
must assume some form for f(x).

T assume, then, that
67

S () = Mgm(M — x).
1t is easy to show that

fr f(x)yde =mn, and 1 f:wf (%) de = LM.

T

Hence, the mean mass m, = M, and the maximum frequency is for masses equal
to my. ,
Then, by (56), we have for the mean mass at radius »

M
sz (M — 2) et*de

m = -
Lx M — 2) et*d

But

["a2 (M — ) v = %[eMﬂ (MPg® — 4Mg + 6) — 2 (Mq + 3)],

0 \

X | (58)

_[ (M — ) er*d = %[e“ﬂ (Mg — 2) + (Mg + 2)].
0 . !

It may be remarked that, if Mg be treated as small, we have the first of these
integrals equal to 4M* (1 + $Mg), and the second equal to M3 (1 + LMg), and the
ratio of the first to the second is M (1 + #5Mg).:

In order to evaluate m, we proceed to introduce the approximate value for ¢.

Now, o

q= 7%/—, log v%i,’ and €% = <EV’> /m;

Wy

then, writing for brevity, :
. w \ M/
P = log <~> ,

. Wo
we have
w \M,

!
_) (P* — 4P + 6) — 2(P + 3)
m W,

2 \w,
ur (%)MW(P—- 2) 4+ (P + 2)

0

(59)

(S
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 55
Also, if P be small, the approximate result is

m

Before proceeding to give numerical values for the fall of mean mass as we proceed
outwards from the centre of the isothermal sphere, we must consider

The Adiabatic Layer.

In this case we assume, as bhefore, that the ratio of the two specific heats is 1§, and
we therefore have for the relationship between 8p and dw at radius 7,

L _ (i

o T \8w,) "
1as _ 38 d (s
dw dr- " O | Sw, |dr\dw,)’

But, since 8p,, 8w, apply to the radius o where / = hy, a constant,

Hence,

3%y _ Iy
8w, T @’

Thus, in the adiabatic layer the equation of hydrostatic equilibrium is

hy d [Sw\E 4
5% 2 (2% X —
6wd1‘< >+E;_0’

dw,

h dw \?
— 50 — [ =
xX=%" <1 <8wo> ) R (:10))

' 6yz ]
Sw = SLUO l:l -— ‘571/(‘;} .

whence,

or

The investigation now follows a line parallel to that taken before.
We have §n/8n, = dw/dw,, and 8n, = f(x) dw, so that

Sn = <1 — %f)?(x) Sz

This is the law of frequency of masses lying between « and x 4 8z at radius r.
As 8n can never be negative, we see that there can be no mass greater than Sholx s
and, if M be the greatest positive value of the expression f(z), there can be no mass
greater than the smaller of & A,/x or M.


http://rsta.royalsocietypublishing.org/

%

a
A
ma \
A ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

56 PROFESSOR G. H. DARWIN ON THE MECHANICAL CONDITIONS OF

Thus, if m be the mean mass at radius 7,
r @ (1 — E7—‘—%);:{]”(90) dax :
0 5h, (6 . )
r T 62@)30(96) " s e e e e
5k, ‘

where « is the smaller of § /,/x and M.
If we put x = 0 in (61), we obtain m,, the mean mass at radius o.
It is clear also that, if w he the total density of the swarm at radius #,

m =

) 6 [ 3
w:jxdn:fowo-—‘57%>f(w)dm. B (9

By definition of x, and in consequence of the supposed spherical arrangement of
matter, we have

.X = ﬁ 5—2 < ﬁ darpawr® da*) dnr.

If this value were substituted in (62), we might obtain a complicated differential
equation for w. It is clear, howeyer, that an adequate approximation may be obtained
by assuming that the w in the integral expressing x is the density of meteorites, all
of which are of the same size m/, arranged in a layer in convective equilibrium, and
with kinetic energy of agitation at the limit r = a equal to % A,

If this density be written w, and if v be the mean square of velocity of
agitation at radius 7, we have, by (60), and in consequence of the relationship

(w/wo)t = (v/v)?,
h w\i v?
— 5 (¥ —_ 52 2
X= 0 (1 <W0>> 50 <1 v02> ’

and

Let

for brevity ; then, adopting the law of frequency f(z) = —?—\-4%’ x (M — ), as before, we
have for the mean mass at radius r
(a2 (M — ) (1 - %)’}dm

m="2 N (1))

[:w(M — ) (1'— g)gcl% ’

where @ is equal to the smaller of M and 8.
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A SWARM OF METEORITES, AND ON THEORIES OF COSMOGONY. 57

The solution now becomes different according as M or B is the smaller.
First, suppose M is the smaller. Then the limits of integration are M and 0.

If we put
=1 — .
i 8
.’L‘”< B) dp =— — Bn+1 Z’<1 —nz _|_ ?1'__71/_2_“1 22— . .> dz’

so that the numerator and denominator of m are easily integrable.
If now we write

M

ﬁ‘zz(M_x)<1 —%fdx:%{%(%— 1>(1-— Qg)—%( §—3>(1 — @)

+4 (5 —3)(1 - )+—A—(1—Q)J

8 4
=2'8{7.9.ﬂ 579Q+o @0 — —QQ‘FQ 11 ]

T P S R )
' 2 2
| |

z)(
=2,33[:;.—9—'TQ+5%Q§—%Q%}

Then, since 8 = (1 — Q)/M, we have

m_ A= $Q+ 40— 20+ 7 Q¥

n==ga—terse—a o 69

This expression has a high order of indeterminateness when @ = 1, but I find that
when @ is nearly equal to unity

m

A= 21 -———(]—Q’f)]nearl) N (1))

Thus, the mean mass is $M where » = @, which we know to be correct.
Secondly, suppose that B is smaller than M. Then effecting the mtegratlon% in the
same manner as before, we have

ﬁmz(M—m)<1 _%de: 2&[_%(%_ 1>_%<%\4_3>+ %‘*(%“3)4“1%]

MDCCCLXXXIX.—A. I
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[or—a)(1~2Ydo= 2[4 (¥ —1) =3 (§ — 2) 3]

Therefore,
M 6
=~ _ 6
m=48.5 —
g
or
mwe o M/ VN e
mo_ oy M m vozj I (66)
M — 9 . 1 X‘—Z_ . % 1 Yi —4:_‘" . . . . . .
v V02> S

In order to compute from the formule, (59), (64), (66), it is necessary to make an
agsumption as to the value of m’ the mass of the meteorites of uniform size whose
arrangement of density is supposed to be the same as that of the heterogeneous
meteorites.

We have supposed that the law of frequency of masses is known at radius a, and
that the mean mass is there equal to $M. Now, inside of that radius the larger
masses are more frequent, and outside of it the smaller masses. I suppose, then, that
throughout the isothermal sphere m’ lies half way between m, or 1M and the
maximum mass M, and in the adiabatic layer that it lies half way between m, or +M
and the minimum mass 0.

Thus, inside I take m' = 2M, and outside m' = L M.

As we only want to consider the general nature of the sorting process, these
assumptions will suffice. It may also he remarked that a large variation of m’ is
required to make any considerable difference in the numerical results.

We now have—

In the isothermal sphere (where w, = %p),

M w\*
W:%, P=logg<11;)>, M = m,;

In the adiabatic layer,

Thus, our formule are :—
In the isothermal sphere, from (59),

<¥> (P — 4P + 6) — 2 (P + ) |
—— 2}' ’38 "Wt%'"” T o e ; . . . . . (67)
(;)) (P —2) + (P +2)

m

Yo
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in the adiabatic layer,

72
when :ﬁ > 2, from (64),

0

ﬂzf‘T"%Q+%Q‘%_2Q%+TZTQ?’ 55)
my 31— QU—3@+ 3¢ —¢) :
V2
when v < 2, from (66),
no_ 2 %%_VQ/VQQ
my 91— VAIvRD) §— Vv T ()

~ The values of w/3p and of v¥/v)> are tabulated in Table IIL, and from these
I compute—

. v 3 v
isothermal. v > 1 A v <3
15 A N\ — N 5 - N
LA ‘16 48 80 10 109 12 183 15 171 200 221 246 279
@
M —141 188 122 111 10 ‘92 83 ‘66 49 38 30 27 24 22
My

These values (together with two others in the isothermal part) are set out in fig. 2,
and show the law of dimigution of mean mass from centre to outside.

Fig. 2.

e porntls compily

wre mrhied wille 1 fof.

4 /. / ~
ittt e .

Diagram showing diminution of mean mass from centre to outside.
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The evaluation of mean mass in the fringe (see § 13), where collisions are supposed
to be non-existent, is not very difficult, although it involves some troublesome algebra.
I do not give the investigation, merely remarking that it leads to almost exactly the
same kind of law of diminution of mean mass as we have found in the adiabatic

layer.
§17. Summary.

The first and second sections only involved arguments of a general character in
which mathematical analysis was unnecessary. The reader who does not wish to
concern himself with details may therefore be supposed to have passed from §§ 1 and 2
to this Summary.

In order to submit the theory to an adequate test, it is necessary to discuss some
definite case of the aggregation of a swarm of meteorites, and it is obvious that the
only system of which we possess any knowledge is our own. It is accordingly
supposed that a number of meteorites have fallen together from a condition of wide
dispersion, and have ultimately coalesced so as to leave the Sun and planets as their
progeny. The object of this paper is to consider the mechanical condition of the
system after the cessation of any considerable supply of meteorites from outside, and
before the coalescence of the swarm into a star with attendant planets.

For the sake of simplicity, the meteorites are considered to be spherical, and are
treated, at least in the first instance, as being of uniform size.

Tt is assumed provisionally that the kinetic theory of gases may be applied for the
determination of the distributien of the meteorites in space.--No account being taken of
the rotation of the system, the meteorites will be arranged in concentric spherical layers
of equal ldehsi'ty of distribution, and the quasi-gas, whose molecules are meteorites,
being compressible, the density will be greater towards the centre of the swarm.

The elasticity of a gas depends on the kinetic energy of agitation of its molecules ;
and, therefore, in order to determine the law of density in the swarm, we must
know the distribution of kinetic energy of agitation. It is assumed that, when the
swarm comes under our notice, uniformity of distribution of energy has been attained
throughout a central sphere, which is surrounded by a layer of meteorites with that
distribution of kinetic energy which in a gas corresponds to convective equilibrium.
In other words, we have a quasi-isothermal sphere surrounded by what may be called
an atmosphere in convective equilibrium, and with continuity of density and velocity
of agitation at the sphere of separation. Since in a gas in convective equilibrium
the law connecting pressure and density is that which holds when the gas is
contained in a vessel impermeable to heat, such an arrangement of gas has been called
by M. Rirrer “an isothermal-adiabatic sphere,” and the same term is adopted here
as applicable to a swarm of meteorites. The justifiability of these assnmptions will
be considered later. | ’

The first problem which presents itself, then, is the equilibrium of an isothermal
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sphere of gas under its own gravitation. The law of density is determined in § 4;
but it will here suffice to remark that, if a given mass be enclosed in an envelope of
given radius, there is a minimum temperature (or energy of agitation) at which
isothermal equilibrium is possible. The minimum energy of agitation is found
to be such that the mean square of velocity of the meteorites is almost exactly &
(viz. 1°1917) of the squave of the velocity of a satellite grazing the surface of the
sphere in a circular orbit.

As indicated above, it is supposed that in the meteor-swarm the rigid envelope
bounding the isothermal sphere is replaced by a layer of meteorites in convective
equilibrium. The law of density in the adiabatic layer is determined in § 5, and it
appears that, when the isothermal sphere has minimum temperature, the mass of the
adiabatic atmosphere is a minimum relatively to that of the isothermal sphere.
Numerical calculation shows, in fact, that the isothermal sphere cannot amount in
mass to more than 46 per cent. of the mass of the whole isothermal-adiabatic sphere,
and that the limit of the adiabatic atmosphere is at a distance equal to 2786 times
the radius of the isothermal sphere.®* A table of various quantities in such a system,
at various distances from the centre, is given in Table IIL., § 6.

It is next proved, in § 7, that the total energy, existing in the form of energy of
agitation in an isothermal-adiabatic sphere, is exactly one-half of the potential energy
lost in the concentration of the matter from a condition of infinite dispersion. This
result is brought about by a continual transfer of energy from a molar to a molecular
form, for a portion of the kinetic energy of a meteorite is constantly being transferred
into the form of thermal energy in the volatilised gases generated on collision. The
thermal energy is then lost by radiation.

It is impossible as yet to sum up all the considerations which go to justify the
assumption of the isothermal-adiabatic arrangement ; but it is clear that uniformity
of kinetic energy of agitation in the isothermal sphere must be principally brought
about by a process of diffusion. It is, therefore, interesting to consider what amount
of inequality in the kinetic energy would have to be smoothed away.

The arrangement of density in the isothermal-adiabatic sphere being given, it is
easy to compute what the kinetic energy would be at any part of the swarm, if each
meteorite fell from infinity to the neighbourhood where we find it, and there retained
all the velocity due to such fall. The variation of the square of this velocity gives an
indication of the amount of inequality of kinetic energy which has to be degraded by
conversion into heat and redistributed by diffusion in the attainment of uniformity.
This may be called “the theoretical value of the kinetic energy”; it is tabulated in
Table III., on the line called ““square of velocity of satellite.” It rises from zero at
“the centre of the sphere to a maximum, which is attained nearly half way through
the adiabatic layer, and then falls again. If the radius of the isothermal sphere be
unity, then from 4 to 2 the variations of this theoretical value of the kinetic energy

* These results had been previously discovered by M. RirTrR.


http://rsta.royalsocietypublishing.org/

N

a
-

I ¥
L A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

62 PROFESSOR (. H. DARWIN ON THE MECHANICAIL CONDITIONS OF

are small. Since this “ theoretical value of the kinetic energy” is zero at the centre,
there must have been diffusion of eunergy from without inwards, and considerations
of the same kind show that when a planet consolidates there must be a cooling of
the middle strata both outwards and inwards.

We must now consider the nature of the criterion which determines whether the
hydrodynamical treatment of a swarm of meteorites is permissible.

The hydrodynamical treatment of an ideal plenum of gas leads to the same result
as the kinetic theory with regard to any phenomenon involving purely a mass, when
that mass is a large multiple of the mass of a molecule ; to any phenomenon involving
purely a length, when the cube of that length contains a large number of molecules ;
and to any phenomenon involving purely a time, when that time is a large multiple
of the mean interval between collisions. Again, any velocity to be justly deduced
from hydrodynamical principles must be expressible as the edge of a cube containing
many molecules passed over in a time containing many collisions of a single molecule ;
and a similar statement must hold of any other function of mass, length, and time.

Beyond these limits, we must go back to the kinetic theory itself, and in using it
care must be taken that enough molecules are considered at once to impart statistical
constancy to their properties.

There are limits, then, to the hydrodynamical treatment of gases, and the like must
hold of the parallel treatment of meteorites.

The principal question involved in the nebular hypothesis seems to be the stability
of a rotating mass of gas; but, unfortunately, this has remained up to now an
untouched field of mathematical research. We can only judge of probable results
from the investigations which have been made concerning the stability of a rotating
mass of liquid. Now, it appears that the instability of a rotating mass of liquid first
enters through the graver modes of gravitatioual oscillation. In the case of a
rotating spheroid of revolution the gravest mode of oscillation is an elliptic deforma-
tion, and its period does not differ much from that of a satellite which revolves round
the spheroid so as to graze its surface. Hence, assuming for the moment that a
kinetic theory of iiquids had been formulated, we should not be justified in applying
the hydrodynamical method to this discussion of stability unless the periodic time of
such a satellite were a large multiple of the analogue of the mean free time of a
molecule of liquid.*

Carrying, then, this conclusion on to the kinetic theory of meteorites, it seems
probable that hydrodynamical treatment must be inapplicable for the discussion of
such a theory as the meteoric-nebular hypothesis, unless a similar relation holds good.

These considerations, although of-a very general character, will atford a criterion of
the applicability of hydrodynamics to the discussion of the mechanical conditions of a
swarm of meteorites in the kind of problem suggested by the nebular hypothesis.

% If the molecules of ligunid describe orbits about one another, the analogue would probably be the
mean periodic time of one molecule about another.
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In §9 two criteria, suggested by this line of thought, are found. They measure,
roughly speaking, the degree of curvature of the average path pursued by a meteorite
between two collisions. These two criteria, denoted D/L and A4/C, will afford a
measure of the applicability of hydrodynamics in the sense above indicated.

After these preliminary investigations, we have to consider what kind of meeting
of two meteorites will amount to an “ encounter ” within the meaning of the kinetic
theory. Is it possible, in fact, that two meteorites can considerably bend their paths
under the influence of gravitation when they pass near one another ? This question
is answered in § 8, where a formula is found for the deflection of the path of each of a
pair of meteorites, when, moving with their mean relative velocity, they graze past
one another without striking. It appears from the formula that, unless they have the
dimensions of small planets, the mutual gravitational influence is practically insensible.
Hence, nothing short of absolute impact is to be considered an encounter in the
kinetic theory ; and what is called the radius of “the sphere of action” is simply the
distance between the centres of a pair when they graze, and is, therefore, the sum of
their radii, or, if of uniform size, the diameter of one of them.

The next point to consider is the mass and size which must be attributed to the
meteorites.

The few samples which have been found on the earth prove that no great error can
be committed if the average density of a meteorite be taken as a little less than that
of iron, and I accordingly suppose their density to be six times that of water.

Undoubtedly, in a swarm of meteorites all sizes exist (a supposition considered
hereafter) ; for, even if originally of one uniform size, they would, by subsequent
fracture, be rendered diverse. But in the first consideration of the problem they have
been treated as of uniform size, and, as actual average sizes are nearly unknown,
results are given in the numerical table for meteorites weighing 3% grammes. By
merely shifting the decimal point one, two, or three places to the right the results
become applicable to meteorites weighing 8% kilogrammes, 8% tonnes, 3125 tonnes,
and so on.

It is known that meteorites are actually of irregular shapes, but certainly no
material error can be incurred when we treat them as being spheres.

The object of all these investigations is to apply the formule to a concrete example.
The mass of the system is therefore taken as equal to that of the Sun, and the limit
of the swarm at any arbitrary distance from the present Sun’s centre. The theory is,
of course, most severely tested the wider the dispersion of the swarm; and, accordingly,
in the numerical example the outside limit of the Solar swarm is taken at 44} times
the Earth’s distance from the Sun, or further beyond the planet Neptune than Saturn
is from the Sun. This assumption makes the limit of the isothermal sphere at
distance 16, about half way between Saturn and Uranus.

The results, applicable to meteorites of 3% grammes, are exhibited in Table IV., §10.

The velocity of mean square in the isothermal sphere is /(6/5) of the linear velocity
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of a planet at distance 16, revolving about a central body with a mass equal to
46 per cent. of that of the Sun, viz., 5% kilometres per second ; and in the adiabatic
layer it diminishes down to zero at distance 44%. This velocity is independent of the
size of the meteorites.

The mean free path between collisions ranges from 42,000 kilometres at the centre,
to 1,300,000 kilometres at radius 16, and to infinity at radius 441  The mean
interval between collisions ranges from a tenth of a day at the centre, to three days
at radius 16, and to infinity at radius 445. The criterion D/L ranges from z5355 at
the distance of the asteroids, to g4y at radius 16, and to infinity at radius 443
The criterion 4/C is somewhat smaller than D/L. All these quantities are ten times
as great for meteorites of 3§ kilogrammes, and a hundred times as great for meteorites
of 3% tonnes.

From a consideration of the table it appears that, with meteorites of 3} kilogrammes,
the collisions are sufficiently frequent, even beyond the orbit of Neptune, to allow the
kinetic theory to be applicable in the sense explained. But, if the meteorites weigh
3% tonnes, the criteria cease to be very small about distance 24 ; and, if they weigh
3125 tonnes, they cease to be very small at about the orbit of Jupiter.

It may be concluded, then, that, as far as frequency of collision is concerned, the
hydrodynamical treatment of a swarm of meteorites is justifiable.

Although these numerical results are necessarily affected by the conjectural values
of the mass and density of the meteorites, yet it was impossible to arrive at any
conclusion whatever as to the validity of the theory without numerical values, and
such a discussion as the above was therefore necessary. If the particular values used
are not such as to commend themselves to the judgment of the reader, it is easy to
substitute others in the formulee, and so submit the theory to another test.

I now pass on to consider some results of this view of a swarm of meteorites, and
to consider the justifiability of the assumption of an isothermal-adiabatic arrangement
of density.

With regard to the uniformity of distribution of kinetic energy in the isothermal
sphere, it is important to ask whether or not sufficient time can have elapsed in the
history of the system to allow of the equalisation by diffusion.

In § 11 the rate of diffusion of the kinetic energy of agitation is considered, and it
is shown that, in the case of our numerical example, primitive inequalities of distribu-
tion would, in a few thousand years, be sensibly equalised over a distance some ten
times as great as our distance from the Sun. This result, then, goes to show that we
are justified in assuming an isothermal sphere as the centre of the swarm. As, how-
ever, the swarm contracts, the rate of diffusion diminishes as the inverse § power of
its linear dimensions, whilst the rate of generation of inequalities of distribution of
kinetic energy, through the imperfect elasticity of the meteorites, increases. Hence,
in a late stage of the swarm inequalities of kinetic energy would be set up ; thus,
there would be a tendency to the production of convective currents, and thie whole
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swarm would probably settle down to the condition of convective equilibrium
throughout.

It may be conjectured, then, that the best hypothesis in the early stages of the
swarm is the isothermal adiabatic arrangement, and later an adiabatic sphere. It has
not seemed to me worth while to discuss the latter hypothesis in detail at present.

The investigation of § 11 also gives the coefficient of viscosity of the quasi-gas, and
shows that it is so great that the meteor-swarm must, if rotating, revolve nearly
without relative motion of its parts, other than the motion of agitation. But, as the
viscosity diminishes when the swarm contracts, this would probably not be true in the
later stages of its history, and the central portion would probably rotate more
rapidly than the outside. It forms, however, no part of the scope of this paper to
consider the rotation of the system.

In § 12 the rate of loss of kinetic energy through imperfect elasticity is considered,
and it appears that the rate estimated per unit time and volume must vary directly
as the square of the quasi-pressure and inversely as the mean velocity of agitation.
Since the kinetic energy lost is taken up in volatilising solid matter, it follows that
the heat generated must follow the same law. The mean temperature of the gases
generated in any part of the swarm depends on a great variety of circumstances, but
it seems probable that its variation would be according to some law of the same kind.
Thus, if the spectroscope enables us to form an idea of the temperature in various
parts of a nebula, we shall at the same time obtain some idea of the distribution of
density.

It has been assumed that the outer portion of the swarm is in convective
equilibrium, and therefore there is a definite limit beyond which it cannot extend.
Now, a medium can only be said to be in convective equilibrium when it obeys the
laws of gases, and the applicability of those laws depends on the frequency of collisions.
But at the boundary of the adiabatic layer the velocity of agitation vanishes, and
collisions become infinitely rare. These two propositions are mutually destructive of
one another, and it is impossible to push the conception of convective equilibrium to
its logical conclusion. There must, in fact, be some degree of rarity of density, and of
collisions, at which the statistical treatment of the medium breaks down.

I have sought to obtain some representation of the state of things by supposing
that collisions never occur beyond a certain distance from the centre of the swarm.
Then, from every point of the surface of the sphere, which limits the regions of
collisions, a fountain of meteorites is shot out, in all azimuths and inclinations to the
vertical, and with velocities grouped about a mean according to the law of error.
These meteorites ascend to various heights without collision, and, in falling back on to
the limiting sphere, cannonade its surface, so as to counterbalance the hydrestatic
pressure at the limiting sphere.

The distribution of meteorites, thus shot out, is investigated in §13, and it is
found that near the limiting sphere the decrease in density is somewhat more rapid

MDCCOLXXXIX.—A. K
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than the decrease corresponding to convective equilibrium. But at more remote
distances the decrease is less rapid, and the density ultimately tends to vary inversely
as the square of the distance from the centre.

It is clear, then, that, according to this hypothesis, the mass of the system is infinite
in a mathematical sense, for the existence of meteorites with nearly parabolic and
hyperbolic orbits necessitates an infinite number, if the loss of the system shall be
made good by the supply.*

But, if we consider the subject from a physical point of view, this conclusion
appears unobjectionable. The ejection of molecules with exceptionally high velocities
from the surface of a liquid is called evaporation, and the absorption of others is called
condensation. The general history of a swarm, as stated in § 2, may then be put in
different, words, for we may say that at first a swarm gains by condensation, that
condensation and evaporation balance, and, finally, that evaporation gains the day.

If the hypothesis of convective equilibrium be pushed to its logical conclusion, we
reach a definite limit to the swarm, whereas, if collisions be entirely annulled, the
density goes on decreasing inversely as the square of the distance. The truth must
clearly lie between these two hypotheses. It is thus certain that even the very small
amount of evaporation shown by the formulse derived from the hypothesis of no
collisions must be in excess of the truth; and it may be that there are enough waifs
and strays in space, ejected from other systems, to make up for the loss. Whether or
not the compensation is perfect, a swarm of meteorites would pursue its evolution
without being sensibly affected by a slow evaporation.

Up to this point the meteorites have been considered as of uniform size, but it is
well to examine the more truthful hypothesis, that they are of all sizes, grouped about
a mean according to a law of error.

It appears, from the investigation in § 14, that the larger stones move slower, the
smaller ones faster ; and the law is that the mean kinetic energy is the szme for all
sizes.

Tt is proved that the mean path between collisions is shorter in the proportion of
7 to 11, and the mean frequency greater in the proportion of 4 to 3, than if the
meteorites were of uniform mass, equal to their mean. Hence, the previous numerical
results for uniform size are applicable to non-uniform meteorites of mean mass about
a third greater than the uniform mass; for example, the results for uniform
meteorites of 3% tonnes apply to non-uniform ones of mean mass, a little over 4
tonnes.

The means here spoken of refer to all sizes grouped together, but there are a separate
mean free path and a mean frequency appropriate to each size. These are investigated

[* It must also be borne in mind that the very high velocities, which occur vccasionally in a medium
with perfectly elastic molecules, must happen with great rarity amongst meteorites. An impact of such
violence that it ought to generate a hyperbolic velocity will probably merely cause fracture.—Added
Nov. 23, 1888.]
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in § 15, and their various values are illustrated in fig. 1. The horizontal scale in that
figure gives the ratio of the radius of each size to the radius of the meteorite of mean
mass. The vertical scales are the ratio of the mean free path of any size to that of
all sizes together, and the ratio of the mean frequency for any size to that of all sizes
together. The figure shows that collisions become infinitely frequent for the infinitely
small ones, because of their infinite velocity ; and again infinitely frequent for the
infinitely large ones, because of their infinite size. There is a minimum frequency of
collision for a certain size, a little less in radius than the mean, and considerably less
in mass than the mean mass.

For infinitely small meteorites, the mean free path reaches a finite limit, equal to
about four times the grand mean free path ; but this could not be shown in the figure
without a considerable extension of it upwards. For infinitely large ones, the mean
free path becomes infinitely short. It must be borne in mind that there are infinitely
few of the infinitely large and small meteorites.

Variety of size does not, then, so far, materially affect the results.

But a difference arises when we come to consider the different parts of the swarm.
The larger meteorites, moving with smaller velocities, form a quasi-gas of less elasticity
than do the smaller ones. Hence, the larger meteorites are more condensed towards
the centre than are the smaller ones, or the large ones have a tendency to sink down,
whilst the small ones have a tendency to rise. Accordingly, the various kinds are to
some extent sorted according to size.

In § 16, an investigation is made of the mean mass of the meteorites at various
distances from the centre, both inside and outside of the isothermal sphere, and fig. 2
is drawn to illustrate the law of diminution of mean mass.

It is also clear that the loss of the system through evaporation must fall more
heavily on the small meteorites than on the large ones. ‘

After the foregoing summary, it will be well to briefly recapitulate the principal
conclusions which seem to be legitimately deducible from the whole investigation ;
and, in this recapitulation, qualifications must necessarily be omitted, or stated with
great brevity.

When two meteorites are in collision, they are virtually highly elastic, although
ordinary elasticity must be nearly inoperative.

A swarm of meteorites is analogous with a gas, and the laws governing gases may
be applied to the discussion of its mechanical properties. This is true of the swarm
from which the Solar system was formed, when it extended beyond the orbit of the
planet Neptune.

When the swarm was very widely dispersed, the arrangement of density and of
velocity of agitation of the meteorites was that of an isothermal-adiabatic sphere.
Later in its history, when the swarm had contracted, it was probably throughout in
convective equilibrium.

The actual mean velocity of the meteorites is determinable in a swarm of given
mass, when expanded to a given extent.

K
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The total energy of agitation in an isothermal-adiabatic sphere is half the potential
energy lost in the concentration from a condition of infinite dispersion.

The half' of the potential energy lost, which does not reappear as kinetic energy of
agitation, is expended in volatilising solid matter and heating the gases produced
on the impact of meteorites. The heat so generated is gradually lost by radiation.

The amount of heat generated per unit time and volume varies as the square of
the quasi-hydrostatic pressure, and inversely as the mean velocity of agitation. The
temperature of the gases volatilised probably varies by some law of the same nature.

The path of the meteorites is approximately straight, except when abruptly
deflected by a collision with another. This ceases to be true at the outskirts of
the swarm, where the collisions have become rare. The meteorites here describe
orbits, under gravity, which are approximately elliptic, parabolic, and hyperbolic.

In this fringe to the swarm the distribution of density ceases to be that of a gas
under gravity, and, as we recede from the centre, the density at first decreases more
rapidly, and afterwards less rapidly, than if the medium were a gas.

Throughout all stages of the history of a swarm there is a sort of evaporation, by
which the swarm very slowly loses in mass, but this loss is more or less counter-
balanced by condensation. In the early stages, the gain by condensation outbalances
the loss by evaporation ; they then equilibrate ; and, finally, the evaporation may be
greater than the condensation.

Throughout the swarm the meteorites are partially sorted, according to size. As
we recede from the centre, the number of small ones preponderates more and more
and, thus, the mean mass continually diminishes with increasing distance. The loss
to the system by evaporation falls principally on the smaller meteorites.

A meteor-swarm is subject to gaseous viscosity, which is greater the more widely
diffused is the swarm. In consequence of this, a widely extended swarm, if in
rotation, will revolve like a rigid body, without relative movement of its parts.
Later in its history, the viscosity will, probably, not suffice to secure uniformity of
rotation, and the central portion will revolve more rapidly than the outside.

[The kinetic theory of meteorites may be held to present a fair approximation to
the truth in the earlier stages of the evolution of the system. But ultimately the
majority of the meteors must have been absorbed by the central Sun and its attendant
planets, and amongst the meteors which remain free the relative motion of agitation
must have been largely diminished. These free meteorites—the dust and refuse of
the system—probably move in clouds, but with so little remaining motion of agitation
that (except, perhaps, near the perihelion of very eccentric orbits) it would scarcely
be permissible to treat the cloud as in any respects possessing the mechanical
properties of a gas.*]

The value of this whole investigation will appear very different to different minds,
To some it will stand condemned, as altogether too speculative ; others may think that

% Added Nov. 23, 1888,
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it is better to risk error on the chance of winning truth. To me, at least, it appears
that the line of thought flows in a true channel; that it may help to give a meaning
to the observations of the spectroscopist; and that many interesting problems, here
barely alluded to, may, perhaps, be solved with sufficient completeness to throw light
on the evolution of nebuls and of planetary systems.
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